957 resultados para Self-organizing Feature Maps
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
A inovação é considerada pelos economistas como fator determinante para o crescimento económico e social sustentável. No contexto da atual economia, global e marcada por uma profunda crise, torna-se imperativo compreender os padrões de inovação para suportar melhores políticas e respostas aos desafios que se impõem. Este entendimento conduz à ilação de que os desvios significativos no crescimento económico observado entre diferentes regiões são também explicados por diferenças espaciais nos padrões de inovação. Na sequência do exposto tem-se assistido a um renovado e crescente interesse no estudo da inovação numa perspetiva territorial e a uma crescente produção e disponibilização de dados para estudo e compreensão das suas dinâmicas. O objectivo principal da presente dissertação é demonstrar a utilidade de uma técnica de Data Mining, a rede neuronal Self Organizing Map, na exploração destes dados para estudo da inovação. Em concreto pretende-se demonstrar a capacidade desta técnica tanto para identificar perfis regionais de inovação bem como para visualizar a evolução desses perfis no tempo num mapa topológico virtual, o espaço de atributos do SOM, por comparação com um mapa geográfico. Foram utilizados dados Euronext relativos a 236 regiões europeias para os anos compreendidos entre 2003 e 2009. O Self Organizing Map foi construído com base no GeoSOM, software desenvolvido pelo Instituto Superior de Estatística e Gestão de Informação. Os resultados obtidos permitem demonstrar a utilidade desta técnica na visualização dos padrões de inovação das regiões europeias no espaço e no tempo.
Resumo:
Etiologic research in psychiatry relies on an objectivist epistemology positing that human cognition is specified by the "reality" of the outer world, which consists of a totality of mind-independent objects. Truth is considered as some sort of correspondence relation between words and external objects, and mind as a mirror of nature. In our view, this epistemology considerably impedes etiologic research. Objectivist epistemology has been recently confronting a growing critique from diverse scientific fields. Alternative models in neurosciences (neuronal selection), artificial intelligence (connectionism), and developmental psychology (developmental biodynamics) converge in viewing living organisms as self-organizing systems. In this perspective, the organism is not specified by the outer world, but enacts its environment by selecting relevant domains of significance that constitute its world. The distinction between mind and body or organism and environment is a matter of observational perspective. These models from empirical sciences are compatible with fundamental tenets of philosophical phenomenology and hermeneutics. They imply consequences for research in psychopathology: symptoms cannot be viewed as disconnected manifestations of discrete localized brain dysfunctions. Psychopathology should therefore focus on how the person's self-coherence is maintained and on the understanding and empirical investigation of the systemic laws that govern neurodevelopment and the organization of human cognition.
Resumo:
Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.
Resumo:
Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.
Resumo:
In this paper we present a Bayesian image reconstruction algorithm with entropy prior (FMAPE) that uses a space-variant hyperparameter. The spatial variation of the hyperparameter allows different degrees of resolution in areas of different statistical characteristics, thus avoiding the large residuals resulting from algorithms that use a constant hyperparameter. In the first implementation of the algorithm, we begin by segmenting a Maximum Likelihood Estimator (MLE) reconstruction. The segmentation method is based on using a wavelet decomposition and a self-organizing neural network. The result is a predetermined number of extended regions plus a small region for each star or bright object. To assign a different value of the hyperparameter to each extended region and star, we use either feasibility tests or cross-validation methods. Once the set of hyperparameters is obtained, we carried out the final Bayesian reconstruction, leading to a reconstruction with decreased bias and excellent visual characteristics. The method has been applied to data from the non-refurbished Hubble Space Telescope. The method can be also applied to ground-based images.
Resumo:
Plants maintain stem cells in their meristems as a source for new undifferentiated cells throughout their life. Meristems are small groups of cells that provide the microenvironment that allows stem cells to prosper. Homeostasis of a stem cell domain within a growing meristem is achieved by signalling between stem cells and surrounding cells. We have here simulated the origin and maintenance of a defined stem cell domain at the tip of Arabidopsis shoot meristems, based on the assumption that meristems are self-organizing systems. The model comprises two coupled feedback regulated genetic systems that control stem cell behaviour. Using a minimal set of spatial parameters, the mathematical model allows to predict the generation, shape and size of the stem cell domain, and the underlying organizing centre. We use the model to explore the parameter space that allows stem cell maintenance, and to simulate the consequences of mutations, gene misexpression and cell ablations.
Resumo:
PURPOSE: To objectively characterize different heart tissues from functional and viability images provided by composite-strain-encoding (C-SENC) MRI. MATERIALS AND METHODS: C-SENC is a new MRI technique for simultaneously acquiring cardiac functional and viability images. In this work, an unsupervised multi-stage fuzzy clustering method is proposed to identify different heart tissues in the C-SENC images. The method is based on sequential application of the fuzzy c-means (FCM) and iterative self-organizing data (ISODATA) clustering algorithms. The proposed method is tested on simulated heart images and on images from nine patients with and without myocardial infarction (MI). The resulting clustered images are compared with MRI delayed-enhancement (DE) viability images for determining MI. Also, Bland-Altman analysis is conducted between the two methods. RESULTS: Normal myocardium, infarcted myocardium, and blood are correctly identified using the proposed method. The clustered images correctly identified 90 +/- 4% of the pixels defined as infarct in the DE images. In addition, 89 +/- 5% of the pixels defined as infarct in the clustered images were also defined as infarct in DE images. The Bland-Altman results show no bias between the two methods in identifying MI. CONCLUSION: The proposed technique allows for objectively identifying divergent heart tissues, which would be potentially important for clinical decision-making in patients with MI.
Resumo:
Industrial symbiosis (IS) emerged as a self-organizing business strategy among firms that are willing to cooperate to improve their economic and environmental performance. The adoption of such cooperative strategies relates to increasing costs of waste management, most of which are driven by policy and legislative requirements. Development of IS depends on an enabling context of social, informational, technological, economical and political factors. The power to influence this context varies among the agents involved such as the government, businesses or coordinating entities. Governmental intervention, as manifested through policies, could influence a wider range of factors; and we believe this is an area which is under-researched. This paper aims to critically appraise the waste policy interventions from supra-national to sub-national levels of government. A case study methodology has been applied to four European countries i.e. Denmark, the UK, Portugal and Switzerland, in which IS emerged or is being fostered. The findings suggest that there are commonalities in policy instruments that may have led to an IS enabling context. The paper concludes with lessons learnt and recommendations on shaping the policy context for IS development.
Resumo:
Vaikka keraamisten laattojen valmistusprosessi onkin täysin automatisoitu, viimeinen vaihe eli laaduntarkistus ja luokittelu tehdään yleensä ihmisvoimin. Automaattinen laaduntarkastus laattojen valmistuksessa voidaan perustella taloudellisuus- ja turvallisuusnäkökohtien avulla. Tämän työn tarkoituksena on kuvata tutkimusprojektia keraamisten laattojen luokittelusta erilaisten väripiirteiden avulla. Oleellisena osana tutkittiin RGB- ja spektrikuvien välistä eroa. Työn teoreettinen osuus käy läpi aiemmin aiheesta tehdyn tutkimuksen sekä antaa taustatietoa konenäöstä, hahmontunnistuksesta, luokittelijoista sekä väriteoriasta. Käytännön osan aineistona oli 25 keraamista laattaa, jotka olivat viidestä eri luokasta. Luokittelussa käytettiin apuna k:n lähimmän naapurin (k-NN) luokittelijaa sekä itseorganisoituvaa karttaa (SOM). Saatuja tuloksia verrattiin myös ihmisten tekemään luokitteluun. Neuraalilaskenta huomattiin tärkeäksi työkaluksi spektrianalyysissä. SOM:n ja spektraalisten piirteiden avulla saadut tulokset olivat lupaavia ja ainoastaan kromatisoidut RGB-piirteet olivat luokittelussa parempia kuin nämä.
Resumo:
Vuosi vuodelta kasvava tietokoneiden prosessointikyky on mahdollistanut harmaataso- ja RGB-värikuvia tarkempien spektrikuvien käsittelyn järjellisessä ajassa ilman suuria kustannuksia. Ongelmana on kuitenkin, ettei talletus- ja tiedonsiirtomedia ole kehittynyt prosessointikyvyn vauhdissa. Ratkaisu tähän ongelmaan on spektrikuvien tiivistäminen talletuksen ja tiedonsiirron ajaksi. Tässä työssä esitellään menetelmä, jossa spektrikuva tiivistetään kahdessa vaiheessa: ensin ryhmittelemällä itseorganisoituvan kartan (SOM) avulla ja toisessa vaiheessa jatketaan tiivistämistä perinteisin menetelmin. Saadut tiivistyssuhteet ovat merkittäviä vääristymän pysyessä siedettävänä. Työ on tehty Lappeenrannan teknillisen korkeakoulun Tietotekniikan osaston Tietojenkäsittelytekniikan tutkimuslaboratoriossa osana laajempaa kuvantiivistyksen tutkimushanketta.
Resumo:
The fact that most of new Personal Data Assistant (PDA) devices and smartphones have the ability to communicate via different wireless technologies has made several new applications possible. While traditional network model is based on the idea of static hosts, mobile devices can create decentralized, self-organizing ad-hoc networks and act as peers in the network. This kind of adapting network is suitable for mobile devices which can freely join and leave the networks. Because several different wireless communication technologies are involved, flexible changing of the networking technology must be handled in order to enable seamless communication between these networks. This thesis presents a transparent network interface to mobile Peer-to-Peer environment which is named as Virtual PeerHood. Different wireless technologies and aspects of providing a seamless connectivity between these technologies are explored. The result is a middleware platform for mobile Peer-to-Peer environment, capable of handling several networking technologies.
Resumo:
Työssä esitellään käytetyimpiä tuotantofilosofioita. Tuotantofilosofia on hyvin laaja käsite ja sen vuoksi myös jotkin esiteltävistä menetelmistä ovat hyvin kaukana toisistaan. Työ koostuu teoriaosiosta, jossa on esitelty kukin tuotantofilosofia ja lopuksi johtopäätöksiä-osiossa käsitellään sitä, kuinka menetelmät liittyvät toisiinsa. Työssä esitellään JIT/JOT-tuotanto, Lean-tuotanto, Monozukuri, Modulointi, Standardointi, Strategiatyö, Six Sigma, TQM, TPM, QFD, MFD, Simulointi, Digitaalinen valmistus, DFX ja ns. uudet tuotantofilosofiat. Eri menetelmistä löytyvää lähdemateriaalia on tarjolla monipuolisesti, josta johtuen menetelmistä on voitu esitellä vain pääpiirteet. Tuotantofilosofioiden avulla voidaan saavuttaa monia eri asioita. Osa menetelmistä on luotu tuotannon tehostamiseksi ja yksinkertaistamiseksi, osa puolestaan lisää tuotannon tai koko yrityksen laatutasoa ja osa puolestaan helpottaa tuotteiden suunnittelu-työtä. Moni esiteltävistä filosofioista ei istu yksinomaan yhteen edellä mainituista kategorioista vaan kattaa laajempia alueita pitäen sisällään jopa kaikkia kolmea mainittua tulosta. Näiden lisäksi työssä on esitelty lyhyesti uusia tuotantofilosofioita, jotka ovat hieman irrallisia kokonaisuuksia verrattuna muihin työssä esiteltäviin filosofioihin. Työn tarkoituksena on auttaa hahmottamaan suurta kokonaisuutta jonka tuotantofilosofiat tuottavat. On tärkeää osata hahmottaa filosofioiden riippuvuus toisistaan ja se, että otettaessa käyttöön jotain tuotantofilosofiaa, tarkoittaa se myös mahdollisesti monen muunkin asian huomioonottamista. Tätä näkökantaa selvennetään johtopäätöksissä.
Resumo:
Visual data mining (VDM) tools employ information visualization techniques in order to represent large amounts of high-dimensional data graphically and to involve the user in exploring data at different levels of detail. The users are looking for outliers, patterns and models – in the form of clusters, classes, trends, and relationships – in different categories of data, i.e., financial, business information, etc. The focus of this thesis is the evaluation of multidimensional visualization techniques, especially from the business user’s perspective. We address three research problems. The first problem is the evaluation of projection-based visualizations with respect to their effectiveness in preserving the original distances between data points and the clustering structure of the data. In this respect, we propose the use of existing clustering validity measures. We illustrate their usefulness in evaluating five visualization techniques: Principal Components Analysis (PCA), Sammon’s Mapping, Self-Organizing Map (SOM), Radial Coordinate Visualization and Star Coordinates. The second problem is concerned with evaluating different visualization techniques as to their effectiveness in visual data mining of business data. For this purpose, we propose an inquiry evaluation technique and conduct the evaluation of nine visualization techniques. The visualizations under evaluation are Multiple Line Graphs, Permutation Matrix, Survey Plot, Scatter Plot Matrix, Parallel Coordinates, Treemap, PCA, Sammon’s Mapping and the SOM. The third problem is the evaluation of quality of use of VDM tools. We provide a conceptual framework for evaluating the quality of use of VDM tools and apply it to the evaluation of the SOM. In the evaluation, we use an inquiry technique for which we developed a questionnaire based on the proposed framework. The contributions of the thesis consist of three new evaluation techniques and the results obtained by applying these evaluation techniques. The thesis provides a systematic approach to evaluation of various visualization techniques. In this respect, first, we performed and described the evaluations in a systematic way, highlighting the evaluation activities, and their inputs and outputs. Secondly, we integrated the evaluation studies in the broad framework of usability evaluation. The results of the evaluations are intended to help developers and researchers of visualization systems to select appropriate visualization techniques in specific situations. The results of the evaluations also contribute to the understanding of the strengths and limitations of the visualization techniques evaluated and further to the improvement of these techniques.
Resumo:
The general trend towards increasing e ciency and energy density drives the industry to high-speed technologies. Active Magnetic Bearings (AMBs) are one of the technologies that allow contactless support of a rotating body. Theoretically, there are no limitations on the rotational speed. The absence of friction, low maintenance cost, micrometer precision, and programmable sti ness have made AMBs a viable choice for highdemanding applications. Along with the advances in power electronics, such as signi cantly improved reliability and cost, AMB systems have gained a wide adoption in the industry. The AMB system is a complex, open-loop unstable system with multiple inputs and outputs. For normal operation, such a system requires a feedback control. To meet the high demands for performance and robustness, model-based control techniques should be applied. These techniques require an accurate plant model description and uncertainty estimations. The advanced control methods require more e ort at the commissioning stage. In this work, a methodology is developed for an automatic commissioning of a subcritical, rigid gas blower machine. The commissioning process includes open-loop tuning of separate parts such as sensors and actuators. The next step is to apply a system identi cation procedure to obtain a model for the controller synthesis. Finally, a robust model-based controller is synthesized and experimentally evaluated in the full operating range of the system. The commissioning procedure is developed by applying only the system components available and a priori knowledge without any additional hardware. Thus, the work provides an intelligent system with a self-diagnostics feature and an automatic commissioning.