920 resultados para Self-Validating Numerical Methods
Resumo:
The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.
Resumo:
This thesis studies properties and applications of different generalized Appell polynomials in the framework of Clifford analysis. As an example of 3D-quasi-conformal mappings realized by generalized Appell polynomials, an analogue of the complex Joukowski transformation of order two is introduced. The consideration of a Pascal n-simplex with hypercomplex entries allows stressing the combinatorial relevance of hypercomplex Appell polynomials. The concept of totally regular variables and its relation to generalized Appell polynomials leads to the construction of new bases for the space of homogeneous holomorphic polynomials whose elements are all isomorphic to the integer powers of the complex variable. For this reason, such polynomials are called pseudo-complex powers (PCP). Different variants of them are subject of a detailed investigation. Special attention is paid to the numerical aspects of PCP. An efficient algorithm based on complex arithmetic is proposed for their implementation. In this context a brief survey on numerical methods for inverting Vandermonde matrices is presented and a modified algorithm is proposed which illustrates advantages of a special type of PCP. Finally, combinatorial applications of generalized Appell polynomials are emphasized. The explicit expression of the coefficients of a particular type of Appell polynomials and their relation to a Pascal simplex with hypercomplex entries are derived. The comparison of two types of 3D Appell polynomials leads to the detection of new trigonometric summation formulas and combinatorial identities of Riordan-Sofo type characterized by their expression in terms of central binomial coefficients.
Resumo:
Communication and cooperation between billions of neurons underlie the power of the brain. How do complex functions of the brain arise from its cellular constituents? How do groups of neurons self-organize into patterns of activity? These are crucial questions in neuroscience. In order to answer them, it is necessary to have solid theoretical understanding of how single neurons communicate at the microscopic level, and how cooperative activity emerges. In this thesis we aim to understand how complex collective phenomena can arise in a simple model of neuronal networks. We use a model with balanced excitation and inhibition and complex network architecture, and we develop analytical and numerical methods for describing its neuronal dynamics. We study how interaction between neurons generates various collective phenomena, such as spontaneous appearance of network oscillations and seizures, and early warnings of these transitions in neuronal networks. Within our model, we show that phase transitions separate various dynamical regimes, and we investigate the corresponding bifurcations and critical phenomena. It permits us to suggest a qualitative explanation of the Berger effect, and to investigate phenomena such as avalanches, band-pass filter, and stochastic resonance. The role of modular structure in the detection of weak signals is also discussed. Moreover, we find nonlinear excitations that can describe paroxysmal spikes observed in electroencephalograms from epileptic brains. It allows us to propose a method to predict epileptic seizures. Memory and learning are key functions of the brain. There are evidences that these processes result from dynamical changes in the structure of the brain. At the microscopic level, synaptic connections are plastic and are modified according to the dynamics of neurons. Thus, we generalize our cortical model to take into account synaptic plasticity and we show that the repertoire of dynamical regimes becomes richer. In particular, we find mixed-mode oscillations and a chaotic regime in neuronal network dynamics.
Resumo:
Second-rank tensor interactions, such as quadrupolar interactions between the spin- 1 deuterium nuclei and the electric field gradients created by chemical bonds, are affected by rapid random molecular motions that modulate the orientation of the molecule with respect to the external magnetic field. In biological and model membrane systems, where a distribution of dynamically averaged anisotropies (quadrupolar splittings, chemical shift anisotropies, etc.) is present and where, in addition, various parts of the sample may undergo a partial magnetic alignment, the numerical analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathematically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regularization) exist that allow for a simultaneous determination of both the anisotropy and orientational distributions. An additional complication arises when relaxation is taken into account. This work presents a method of obtaining the orientation dependence of the relaxation rates that can be used for the analysis of the molecular motions on a broad range of time scales. An arbitrary set of exponential decay rates is described by a three-term truncated Legendre polynomial expansion in the orientation dependence, as appropriate for a second-rank tensor interaction, and a linear approximation to the individual decay rates is made. Thus a severe numerical instability caused by the presence of noise in the experimental data is avoided. At the same time, enough flexibility in the inversion algorithm is retained to achieve a meaningful mapping from raw experimental data to a set of intermediate, model-free
Resumo:
Cette thèse, composée de quatre articles scientifiques, porte sur les méthodes numériques atomistiques et leur application à des systèmes semi-conducteurs nanostructurés. Nous introduisons les méthodes accélérées conçues pour traiter les événements activés, faisant un survol des développements du domaine. Suit notre premier article, qui traite en détail de la technique d'activation-relaxation cinétique (ART-cinétique), un algorithme Monte Carlo cinétique hors-réseau autodidacte basé sur la technique de l'activation-relaxation nouveau (ARTn), dont le développement ouvre la voie au traitement exact des interactions élastiques tout en permettant la simulation de matériaux sur des plages de temps pouvant atteindre la seconde. Ce développement algorithmique, combiné à des données expérimentales récentes, ouvre la voie au second article. On y explique le relâchement de chaleur par le silicium cristallin suite à son implantation ionique avec des ions de Si à 3 keV. Grâce à nos simulations par ART-cinétique et l'analyse de données obtenues par nanocalorimétrie, nous montrons que la relaxation est décrite par un nouveau modèle en deux temps: "réinitialiser et relaxer" ("Replenish-and-Relax"). Ce modèle, assez général, peut potentiellement expliquer la relaxation dans d'autres matériaux désordonnés. Par la suite, nous poussons l'analyse plus loin. Le troisième article offre une analyse poussée des mécanismes atomistiques responsables de la relaxation lors du recuit. Nous montrons que les interactions élastiques entre des défauts ponctuels et des petits complexes de défauts contrôlent la relaxation, en net contraste avec la littérature qui postule que des "poches amorphes" jouent ce rôle. Nous étudions aussi certains sous-aspects de la croissance de boîtes quantiques de Ge sur Si (001). En effet, après une courte mise en contexte et une introduction méthodologique supplémentaire, le quatrième article décrit la structure de la couche de mouillage lors du dépôt de Ge sur Si (001) à l'aide d'une implémentation QM/MM du code BigDFT-ART. Nous caractérisons la structure de la reconstruction 2xN de la surface et abaissons le seuil de la température nécessaire pour la diffusion du Ge en sous-couche prédit théoriquement par plus de 100 K.
Resumo:
This thesis deals with the study of light beam propagation through different nonlinear media. Analytical and numerical methods are used to show the formation of solitonS in these media. Basic experiments have also been performed to show the formation of a self-written waveguide in a photopolymer. The variational method is used for the analytical analysis throughout the thesis. Numerical method based on the finite-difference forms of the original partial differential equation is used for the numerical analysis.In Chapter 2, we have studied two kinds of solitons, the (2 + 1) D spatial solitons and the (3 + l)D spatio-temporal solitons in a cubic-quintic medium in the presence of multiphoton ionization.In Chapter 3, we have studied the evolution of light beam through a different kind of nonlinear media, the photorcfractive polymer. We study modulational instability and beam propagation through a photorefractive polymer in the presence of absorption losses. The one dimensional beam propagation through the nonlinear medium is studied using variational and numerical methods. Stable soliton propagation is observed both analytically and numerically.Chapter 4 deals with the study of modulational instability in a photorefractive crystal in the presence of wave mixing effects. Modulational instability in a photorefractive medium is studied in the presence of two wave mixing. We then propose and derive a model for forward four wave mixing in the photorefractive medium and investigate the modulational instability induced by four wave mixing effects. By using the standard linear stability analysis the instability gain is obtained.Chapter 5 deals with the study of self-written waveguides. Besides the usual analytical analysis, basic experiments were done showing the formation of self-written waveguide in a photopolymer system. The formation of a directional coupler in a photopolymer system is studied theoretically in Chapter 6. We propose and study, using the variational approximation as well as numerical simulation, the evolution of a probe beam through a directional coupler formed in a photopolymer system.