976 resultados para Self-Dual Code
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Despite their importance in the evaluation of petroleum and gas reservoirs, measurements of self-potential data under borehole conditions (well-logging) have found only minor applications in aquifer and waste-site characterization. This can be attributed to lower signals from the diffusion fronts in near-surface environments because measurements are made long after the drilling of the well, when concentration fronts are already disappearing. Proportionally higher signals arise from streaming potentials that prevent using simple interpretation models that assume signals from diffusion only. Our laboratory experiments found that dual-source self-potential signals can be described by a simple linear model, and that contributions (from diffusion and streaming potentials) can be isolated by slightly perturbing the borehole conditions. Perturbations are applied either by changing the concentration of the borehole-filling solution or its column height. Parameters useful for formation evaluation can be estimated from data measured during perturbations, namely, pore water resistivity, pressure drop across the borehole wall, and electrokinetic coupling parameter. These are important parameters to assess, respectively, water quality, aquifer lateral continuity, and interfacial properties of permeable formations.
Resumo:
Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.
Resumo:
The progresses of electron devices integration have proceeded for more than 40 years following the well–known Moore’s law, which states that the transistors density on chip doubles every 24 months. This trend has been possible due to the downsizing of the MOSFET dimensions (scaling); however, new issues and new challenges are arising, and the conventional ”bulk” architecture is becoming inadequate in order to face them. In order to overcome the limitations related to conventional structures, the researchers community is preparing different solutions, that need to be assessed. Possible solutions currently under scrutiny are represented by: • devices incorporating materials with properties different from those of silicon, for the channel and the source/drain regions; • new architectures as Silicon–On–Insulator (SOI) transistors: the body thickness of Ultra-Thin-Body SOI devices is a new design parameter, and it permits to keep under control Short–Channel–Effects without adopting high doping level in the channel. Among the solutions proposed in order to overcome the difficulties related to scaling, we can highlight heterojunctions at the channel edge, obtained by adopting for the source/drain regions materials with band–gap different from that of the channel material. This solution allows to increase the injection velocity of the particles travelling from the source into the channel, and therefore increase the performance of the transistor in terms of provided drain current. The first part of this thesis work addresses the use of heterojunctions in SOI transistors: chapter 3 outlines the basics of the heterojunctions theory and the adoption of such approach in older technologies as the heterojunction–bipolar–transistors; moreover the modifications introduced in the Monte Carlo code in order to simulate conduction band discontinuities are described, and the simulations performed on unidimensional simplified structures in order to validate them as well. Chapter 4 presents the results obtained from the Monte Carlo simulations performed on double–gate SOI transistors featuring conduction band offsets between the source and drain regions and the channel. In particular, attention has been focused on the drain current and to internal quantities as inversion charge, potential energy and carrier velocities. Both graded and abrupt discontinuities have been considered. The scaling of devices dimensions and the adoption of innovative architectures have consequences on the power dissipation as well. In SOI technologies the channel is thermally insulated from the underlying substrate by a SiO2 buried–oxide layer; this SiO2 layer features a thermal conductivity that is two orders of magnitude lower than the silicon one, and it impedes the dissipation of the heat generated in the active region. Moreover, the thermal conductivity of thin semiconductor films is much lower than that of silicon bulk, due to phonon confinement and boundary scattering. All these aspects cause severe self–heating effects, that detrimentally impact the carrier mobility and therefore the saturation drive current for high–performance transistors; as a consequence, thermal device design is becoming a fundamental part of integrated circuit engineering. The second part of this thesis discusses the problem of self–heating in SOI transistors. Chapter 5 describes the causes of heat generation and dissipation in SOI devices, and it provides a brief overview on the methods that have been proposed in order to model these phenomena. In order to understand how this problem impacts the performance of different SOI architectures, three–dimensional electro–thermal simulations have been applied to the analysis of SHE in planar single and double–gate SOI transistors as well as FinFET, featuring the same isothermal electrical characteristics. In chapter 6 the same simulation approach is extensively employed to study the impact of SHE on the performance of a FinFET representative of the high–performance transistor of the 45 nm technology node. Its effects on the ON–current, the maximum temperatures reached inside the device and the thermal resistance associated to the device itself, as well as the dependence of SHE on the main geometrical parameters have been analyzed. Furthermore, the consequences on self–heating of technological solutions such as raised S/D extensions regions or reduction of fin height are explored as well. Finally, conclusions are drawn in chapter 7.
Resumo:
The PhD activity described in the document is part of the Microsatellite and Microsystem Laboratory of the II Faculty of Engineering, University of Bologna. The main objective is the design and development of a GNSS receiver for the orbit determination of microsatellites in low earth orbit. The development starts from the electronic design and goes up to the implementation of the navigation algorithms, covering all the aspects that are involved in this type of applications. The use of GPS receivers for orbit determination is a consolidated application used in many space missions, but the development of the new GNSS system within few years, such as the European Galileo, the Chinese COMPASS and the Russian modernized GLONASS, proposes new challenges and offers new opportunities to increase the orbit determination performances. The evaluation of improvements coming from the new systems together with the implementation of a receiver that is compatible with at least one of the new systems, are the main activities of the PhD. The activities can be divided in three section: receiver requirements definition and prototype implementation, design and analysis of the GNSS signal tracking algorithms, and design and analysis of the navigation algorithms. The receiver prototype is based on a Virtex FPGA by Xilinx, and includes a PowerPC processor. The architecture follows the software defined radio paradigm, so most of signal processing is performed in software while only what is strictly necessary is done in hardware. The tracking algorithms are implemented as a combination of Phase Locked Loop and Frequency Locked Loop for the carrier, and Delay Locked Loop with variable bandwidth for the code. The navigation algorithm is based on the extended Kalman filter and includes an accurate LEO orbit model.
Resumo:
‘Who can be Greek?’ This was the question posed to the Greek society for the first time before the implementation of the Act 3838 in March 2010 which gave the right to access the Greek citizenship -under specific preconditions- to all children of legal migrants born or schooled in Greece. This change of the Nationality Code in order to include all those children was coincided by the economic crisis resulting into the rise of xenophobia, racism and extreme-right rhetoric. The outcome was the cancellation of the Act 3838 by the State Council in February 2013. Under this particular framework, the notions of identity and belonging formed among the youth of African background in Athens are explored. The ways those youngsters perceive not only themselves but also their peers, their countries of origin and the country they live in, are crucial elements of their self-identification. Researches have shown that the integration of the second generation is highly connected to their legal and social status. However, integration is a rather complex process, influenced and shaped by many variables and multiple factors. It is not linear; therefore, its outcomes are difficult to be predicted. Yet, I argue that citizenship acquisition facilitates the process as it transforms those children from ‘aliens’ to ‘citizens’. How these youngsters are perceived by the majority society and the State is one of the core questions of the research, focusing on the imposed dual ‘otherness’ they are subject to. On the one hand, they have to deal with the ‘otherness’ originating from the migrant status inherited to them by their parents, and on the other with the ‘otherness’ deriving from their different phenotypic characteristics. Race matters and becomes a means of discrimination against youth of African background who are perceived as inassimilable and ‘forever others’.
Resumo:
A shared code of connection arguably exists between two plays by Lope de VegaEl mayordomo de la duquesa de Amalfi and El perro del hortelanoand the work of Michel de Montaigne. Nevertheless, one cannot but ask: how it can be that in two works produced so close in time, the same situation is resolved so differently? Montaigne can be said to provide an answer in his Essays, explaining that a similar situation can produce wholly different results: how in the first, one is saved', and in the second, one is destroyed. One might imagine, too, that Belflor's countess and her ennobled secretary, who together sustain a lie in a society that lived by the lie, would have been likewise consoled' by a set of interlocking tropes and similitudes' in the words of Stephen Greenblatt, which linked two contemporary and complementary fashioners of human nature, Lope and Montaigne, in a discursive dialogue on how otherwise honest women and men were subject to the vice of lying in their process of self-fashioning, as well as potentially enslaved' by it.
Resumo:
OBJECTIVES The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. MATERIALS AND METHODS Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RESULTS RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. CONCLUSIONS The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. CLINICAL RELEVANCE When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high irradiances.
Resumo:
Objectives The aim of this study was to measure the degree of conversion (DC) of five dual-curing resin cements after different curing modes with a second- and a third-generation light-emitting diode (LED) curing unit. Additionally, irradiance of both light curing units was measured at increasing distances and through discs of two glass ceramics for computer-aided design/manufacturing (CAD/CAM). Materials and methods Irradiance and spectra of the Elipar FreeLight 2 (Standard Mode (SM)) and of the VALO light curing unit (High Power Mode (HPM) and Xtra Power Mode (XPM)) were measured with a MARC radiometer. Irradiance was measured at increasing distances (control) and through discs (1.5 to 6 mm thickness) of IPS Empress CAD and IPS e.max CAD. DC of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA was measured with an attenuated total reflectance–Fourier transform infrared spectrometer when self-cured (negative control) or light cured in SM for 40 s, HPM for 32 s, or XPM for 18 s. Light curing was performed directly (positive control) or through discs of either 1.5- or 3-mm thickness of IPS Empress CAD or IPS e.max CAD. DC was analysed with Kruskal–Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). Results Maximum irradiances were 1,545 mW/cm2 (SM), 2,179 mW/cm2 (HPM), and 4,156 mW/cm2 (XPM), and all irradiances decreased by >80 % through discs of 1.5 mm, ≥95 % through 3 mm, and up to >99 % through 6 mm. Generally, self-curing resulted in the lowest DC. For some cements, direct light curing did not result in higher DC compared to when light cured through ceramic discs. For other cements, light curing through ceramic discs of 3 mm generally reduced DC. Conclusions Light curing was favourable for dual-curing cements. Some cements were more susceptible to variations in curing mode than others. Clinical relevance When light curing a given cement, the higher irradiances of the third-generation LED curing unit resulted in similar DC compared to the second-generation one, though at shorter light curing times.
Resumo:
Elena Makarova traces how the concept of intercultural education in German-speaking European countries promotes the inclusion of courses in the Language and Culture of Origin (LCO) for immigrant youth in the school curriculum of host countries. Such courses are assumed to have positive effects on the development of immigrant youth in the host country. Particularly, it has been suggested that participation in LCO courses increases the self-esteem of immigrant youth, facilitates the development of their bicultural identity and improves their integration in the host society. However, there is a lack of empirical evidence on the nature of the effects of LCO course attendance on the acculturation of immigrant youth and their cultural identity. Accordingly, the aim of the study detailed in the chapter is to examine the impact of immigrant youth’s attitudes towards LCO courses and of their attendance of such courses on their acculturation and cultural identity.
Resumo:
The dual-effects model of social control proposes that social control leads to increased psychological distress but also to better health practices. However, findings are inconsistent, and recent research suggests that the most effective control is unnoticed by the receiver (i. e., invisible). Yet, investigations of the influence of invisible control on daily negative affect and smoking have been limited. Using daily diaries, we investigated how invisible social control was associated with negative affect and smoking. Overall, 100 smokers (72.0 % men, age M = 40.48, SD = 9.82) and their nonsmoking partners completed electronic diaries from a self-set quit date for 22 consecutive days, reporting received and provided social control, negative affect, and daily smoking. We found in multilevel analyses of the within-person process that on days with higher-than-average invisible control, smokers reported more negative affect and fewer cigarettes smoked. Findings are in line with the assumptions of the dual-effects model of social control: Invisible social control increased daily negative affect and simultaneously reduced smoking at the within-person level.
Resumo:
A frequent applied method in career assessment to elicit clients’ self-concepts is asking them to predict their interest assessment results. Accuracy in estimating one’s interesttype is commonly taken as a sign of more self-awareness and career choice readiness. The study evaluated the empirical relation of accuracy of self-estimation to career choice readiness within a sample of 350 Swiss secondary students in seventh grade. Overall, accuracy showed only weak relations to career choice readiness. However, accurately estimating one’s first interest-type in a three-letter RIASEC interests-code emerged as a sign of more vocational identity and total career choice readiness. Accuracy also correlated positively with interest profile consistency, differentiation, and congruence to career aspirations. Implications of the results for career counseling and assessment practice are presented.
Resumo:
The dual-effects model of social control not only assumes that social control leads to better health practices but also arouses psychological distress. However, findings are inconsistent. The present study advances the current literature by examining social control from a dyadic perspective in the context of smoking. In addition, the study examines whether control, continuous smoking abstinence, and affect are differentially related for men and women. Before and three weeks after a self-set quit attempt, we examined 106 smokers (77 men, mean age: 40.67, average number of cigarettes smoked per day: 16.59 [SD=8.52, range=1-40] at baseline and 5.27 [SD=6.97, range=0-40] at follow-up) and their nonsmoking heterosexual partners, assessing received and provided control, continuous abstinence, and affect. With regard to smoker's affective reactions, partner's provided control was related to an increase in positive and to a decrease in negative affect, but only for female smokers. Moreover, the greater the discrepancy between smoker received and partner's provided control was the more positive affect increased and the more negative affect decreased, but again only for female smokers. These findings demonstrate that female smokers' well-being was raised over time if they were not aware of the control attempts of their nonsmoking partners, indicating positive effects of invisible social control. This study's results emphasize the importance of applying a dyadic perspective and taking gender differences in the dual-effects model of social control into account.
Resumo:
Objectives: The dual-effects model of social control proposes that social control leads to better health practices, but also arouses psychological distress. However, findings are inconsistent in relation to health behavior and psychological distress. Recent research suggests that the most effective control is unnoticed by the receiver (i.e., invisible). There is some evidence that invisible social control is beneficial for positive and negative affective reactions. Yet, investigations of the influence of invisible social control on daily smoking and distress have been limited. In daily diaries, we investigated how invisible social control is associated with number of cigarettes smoked and negative affect on a daily basis. Methods: Overall, 99 smokers (72.0% men, mean age M = 40.48, SD = 9.82) and their non-smoking partners completed electronic diaries from a self-set quit date for 22 consecutive days within the hour before going to bed, reporting received and provided social control, daily number of cigarettes smoked, and negative affect. Results: Multilevel analyses indicated that between-person levels of invisible social control were associated with lower negative affect, whereas they were unrelated to number of cigarettes smoked. On days with higher-than-average invisible social control, smokers reported less cigarettes smoked and more negative affect. Conclusions: Between-person level findings indicate that invisible social control can be beneficial for negative affect. However, findings on the within-person level are in line with the assumptions of the dual-effects model of social control: Invisible social control reduced daily smoking and simultaneously increased daily negative affect within person.