967 resultados para Seiberg-Witten curves
Resumo:
The peak congestion of the European grid may create significant impacts on system costs because of the need for higher marginal cost generation, higher cost system balancing and increasing grid reinforcement investment. The use of time of use rates, incentives, real time pricing and other programmes, usually defined as Demand Side Management (DSM), could bring about significant reductions in prices, limit carbon emissions from dirty power plants, and improve the integration of renewable sources of energy. Unlike previous studies on elasticity of residential electricity demand under flat tariffs, the aim of this study is not to investigate the known relatively inelastic relationship between demand and prices. Rather, the aim is to assess how occupancy levels vary in different European countries. This reflects the reality of demand loads, which are predominantly determined by the timing of human activities (e.g. travelling to work, taking children to school) rather than prices. To this end, two types of occupancy elasticity are estimated: baseline occupancy elasticity and peak occupancy elasticity. These represent the intrinsic elasticity associated with human activities of single residential end-users in 15 European countries. This study makes use of occupancy time-series data from the Harmonised European Time Use Survey database to build European occupancy curves; identify peak occupancy periods; draw time use demand curves for video and TV watching activity; and estimate national occupancy elasticity levels of single-occupant households. Findings on occupancy elasticities provide an indication of possible DSM strategies based on occupancy levels and not prices.
Resumo:
An experiment published in this Journal has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into question the long accepted and well-known explanations involving a passive film. A qualitative and plausible explanation is provided from surprisingly simple principles for this new finding. Some important pedagogic conclusions have been derived from this work. It is noteworthy that the somewhat complicated phenomenon can be simply explained, thus providing two important lessons to students. First, even well-accepted scientific work studying simple processes may be incomplete and worthy of further study, and second, such processes may be explained simply at the undergraduate level. The contents of the paper also confirm that presenting curricular contents in a new and more correct manner is beneficial, interesting, and that research in curricular contents represents one of the important forms of educational research.
Resumo:
We propose a topological approach to the problem of determining a curve from its iterated integrals. In particular, we prove that a family of terms in the signature series of a two dimensional closed curve with finite p-variation, 1≤p<2, are in fact moments of its winding number. This relation allows us to prove that the signature series of a class of simple non-smooth curves uniquely determine the curves. This implies that outside a Chordal SLEκ null set, where 0<κ≤4, the signature series of curves uniquely determine the curves. Our calculations also enable us to express the Fourier transform of the n-point functions of SLE curves in terms of the expected signature of SLE curves. Although the techniques used in this article are deterministic, the results provide a platform for studying SLE curves through the signatures of their sample paths.
Resumo:
We explicitly construct simple, piecewise minimizing geodesic, arbitrarily fine interpolation of simple and Jordan curves on a Riemannian manifold. In particular, a finite sequence of partition points can be specified in advance to be included in our construction. Then we present two applications of our main results: the generalized Green’s theorem and the uniqueness of signature for planar Jordan curves with finite p -variation for 1⩽p<2.
Resumo:
Let L be a number field and let E/L be an elliptic curve with complex multiplication by the ring of integers O_K of an imaginary quadratic field K. We use class field theory and results of Skorobogatov and Zarhin to compute the transcendental part of the Brauer group of the abelian surface ExE. The results for the odd order torsion also apply to the Brauer group of the K3 surface Kum(ExE). We describe explicitly the elliptic curves E/Q with complex multiplication by O_K such that the Brauer group of ExE contains a transcendental element of odd order. We show that such an element gives rise to a Brauer-Manin obstruction to weak approximation on Kum(ExE), while there is no obstruction coming from the algebraic part of the Brauer group.
Resumo:
Let C be a smooth, absolutely irreducible genus 3 curve over a number field M. Suppose that the Jacobian of C has complex multiplication by a sextic CM-field K. Suppose further that K contains no imaginary quadratic subfield. We give a bound on the primes p of M such that the stable reduction of C at p contains three irreducible components of genus 1.
Resumo:
Let E/Q be an elliptic curve and p a rational prime of good ordinary reduction. For every imaginary quadratic field K/Q satisfying the Heegner hypothesis for E we have a corresponding line in E(K)\otimes Q_p, known as a shadow line. When E/Q has analytic rank 2 and E/K has analytic rank 3, shadow lines are expected to lie in E(Q)\otimes Qp. If, in addition, p splits in K/Q, then shadow lines can be determined using the anticyclotomic p-adic height pairing. We develop an algorithm to compute anticyclotomic p-adic heights which we then use to provide an algorithm to compute shadow lines. We conclude by illustrating these algorithms in a collection of examples.
The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters
Resumo:
Surveys for exoplanetary transits are usually limited not by photon noise but rather by the amount of red noise in their data. In particular, although the CoRoT space-based survey data are being carefully scrutinized, significant new sources of systematic noises are still being discovered. Recently, a magnitude-dependant systematic effect was discovered in the CoRoT data by Mazeh et al. and a phenomenological correction was proposed. Here we tie the observed effect to a particular type of effect, and in the process generalize the popular Sysrem algorithm to include external parameters in a simultaneous solution with the unknown effects. We show that a post-processing scheme based on this algorithm performs well and indeed allows for the detection of new transit-like signals that were not previously detected.
Indecomposable and noncrossed product division algebras over function fields of smooth p-adic curves
Resumo:
We construct indecomposable and noncrossed product division algebras over function fields of connected smooth curves X over Z(p). This is done by defining an index preserving morphism s: Br(<(K(X))over cap>)` --> Br(K(X))` which splits res : Br(K (X)) --> Br(<(K(X))over cap>), where <(K(X))over cap> is the completion of K (X) at the special fiber, and using it to lift indecomposable and noncrossed product division algebras over <(K(X))over cap>. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a functional form, linear in the parameters, to deal with income distribution and Lorenz curves. The function is fitted to the Brazilian income distribution. Data standard deviations were estimated from year-to-year variation of the income share. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We investigate the transport properties (IxV curves and zero bias transmittance) of pristine graphene nanoribbons (GNRs) as well as doped with boron and nitrogen using an approach that combines nonequilibrium Green`s functions and density functional theory (DFT) [NEGF-DFT]. Even for a pristine nanoribbon we verify a spin-filter effect under finite bias voltage when the leads have an antiparallel magnetization. The presence of the impurities at the edges of monohydrogenated zigzag GNRs changes dramatically the charge transport properties inducing a spin-polarized conductance. The IxV curves for these systems show that depending on the bias voltage the spin polarization can be inverted. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1379-1386, 2011