937 resultados para Second-order systems of ordinary differential equations
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
A multiseries integrable model (MSIM) is defined as a family of compatible flows on an infinite-dimensional Lie group of N-tuples of formal series around N given poles on the Riemann sphere. Broad classes of solutions to a MSIM are characterized through modules over rings of rational functions, called asymptotic modules. Possible ways for constructing asymptotic modules are Riemann-Hilbert and ∂̄ problems. When MSIM's are written in terms of the group coordinates, some of them can be contracted into standard integrable models involving a small number of scalar functions only. Simple contractible MSIM's corresponding to one pole, yield the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. Two-pole contractible MSIM's are exhibited, which lead to a hierarchy of solvable systems of nonlinear differential equations consisting of (2 + 1) -dimensional evolution equations and of quite strong differential constraints. © 1989 American Institute of Physics.
Resumo:
Los modelos de termomecánica glaciar están definidos mediante sistemas de ecuaciones en derivadas parciales que establecen los principios básicos de conservación de masa, momento lineal y energía, acompañados por una ley constitutiva que define la relación entre las tensiones a las que está sometido el hielo glaciar y las deformaciones resultantes de las mismas. La resolución de estas ecuaciones requiere la definición precisa del dominio (la geometría del glaciar, obtenido a partir de medidas topográficas y de georradar), así como contar con un conjunto de condiciones de contorno, que se obtienen a partir de medidas de campo de las variables implicadas y que constituyen un conjunto de datos geoespaciales. El objetivo fundamental de esta tesis es desarrollar una serie de herramientas que nos permitan definir con precisión la geometría del glaciar y disponer de un conjunto adecuado de valores de las variables a utilizar como condiciones de contorno del problema. Para ello, en esta tesis se aborda la recopilación, la integración y el estudio de los datos geoespaciales existentes para la Península Hurd, en la Isla Livingston (Antártida), generados desde el año 1957 hasta la actualidad, en un sistema de información geográfica. Del correcto tratamiento y procesamiento de estos datos se obtienen otra serie de elementos que nos permiten realizar la simulación numérica del régimen termomecánico presente de los glaciares de Península Hurd, así como su evolución futura. Con este objetivo se desarrolla en primer lugar un inventario completo de datos geoespaciales y se realiza un procesado de los datos capturados en campo, para establecer un sistema de referencia común a todos ellos. Se unifican además todos los datos bajo un mismo formato estándar de almacenamiento e intercambio de información, generándose los metadatos correspondientes. Se desarrollan asimismo técnicas para la mejora de los procedimientos de captura y procesado de los datos, de forma que se minimicen los errores y se disponga de estimaciones fiables de los mismos. El hecho de que toda la información se integre en un sistema de información geográfica (una vez producida la normalización e inventariado de la misma) permite su consulta rápida y ágil por terceros. Además, hace posible efectuar sobre ella una serie de operaciones conducentes a la obtención de nuevas capas de información. El análisis de estos nuevos datos permite explicar el comportamiento pasado de los glaciares objeto de estudio y proporciona elementos esenciales para la simulación de su comportamiento futuro. ABSTRACT Glacier thermo-mechanical models are defined by systems of partial differential equations stating the basic principles of conservation of mass, momentum and energy, accompanied by a constitutive principle that defines the relationship between the stresses acting on the ice and the resulting deformations. The solution of these equations requires an accurate definition of the model domain (the geometry of the glacier, obtained from topographical and ground penetrating radar measurements), as well as a set of boundary conditions, which are obtained from measurements of the variables involved and define a set of geospatial data. The main objective of this thesis is to develop tools able to provide an accurate definition of the glacier geometry and getting a proper set of values for the variables to be used as boundary conditions of our problem. With the above aim, this thesis focuses on the collection, compilation and study of the geospatial data existing for the Hurd Peninsula on Livingston Island, Antarctica, generated since 1957 to present, into a geographic information system. The correct handling and processing of these data results on a new collection of elements that allow us to numerically model the present state and the future evolution of Hurd Peninsula glaciers. First, a complete inventory of geospatial data is developed and the captured data are processed, with the aim of establishing a reference system common to all collections of data. All data are stored under a common standard format, and the corresponding metadata are generated to facilitate the information exchange. We also develop techniques for the improvement of the procedures used for capturing and processing the data, such that the errors are minimized and better estimated. All information is integrated into a geographic information system (once produced the standardization and inventory of it). This allows easy and fast viewing and consulting of the data by third parties. Also, it is possible to carry out a series of operations leading to the production of new layers of information. The analysis of these new data allows to explain past glacier behavior, and provides essential elements for explaining its future evolution.
Resumo:
LINS, Filipe C. A. et al. Modelagem dinâmica e simulação computacional de poços de petróleo verticais e direcionais com elevação por bombeio mecânico. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5. 2009, Fortaleza, CE. Anais... Fortaleza: CBPDPetro, 2009.
Resumo:
LINS, Filipe C. A. et al. Modelagem dinâmica e simulação computacional de poços de petróleo verticais e direcionais com elevação por bombeio mecânico. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5. 2009, Fortaleza, CE. Anais... Fortaleza: CBPDPetro, 2009.
Resumo:
This thesis is a compilation of 6 papers that the author has written together with Alberto Lanconelli (chapters 3, 5 and 8) and Hyun-Jung Kim (ch 7). The logic thread that link all these chapters together is the interest to analyze and approximate the solutions of certain stochastic differential equations using the so called Wick product as the basic tool. In the first chapter we present arguably the most important achievement of this thesis; namely the generalization to multiple dimensions of a Wick-Wong-Zakai approximation theorem proposed by Hu and Oksendal. By exploiting the relationship between the Wick product and the Malliavin derivative we propose an original reduction method which allows us to approximate semi-linear systems of stochastic differential equations of the Itô type. Furthermore in chapter 4 we present a non-trivial extension of the aforementioned results to the case in which the system of stochastic differential equations are driven by a multi-dimensional fraction Brownian motion with Hurst parameter bigger than 1/2. In chapter 5 we employ our approach and present a “short time” approximation for the solution of the Zakai equation from non-linear filtering theory and provide an estimation of the speed of convergence. In chapters 6 and 7 we study some properties of the unique mild solution for the Stochastic Heat Equation driven by spatial white noise of the Wick-Skorohod type. In particular by means of our reduction method we obtain an alternative derivation of the Feynman-Kac representation for the solution, we find its optimal Hölder regularity in time and space and present a Feynman-Kac-type closed form for its spatial derivative. Chapter 8 treats a somewhat different topic; in particular we investigate some probabilistic aspects of the unique global strong solution of a two dimensional system of semi-linear stochastic differential equations describing a predator-prey model perturbed by Gaussian noise.
Resumo:
Some existence results are obtained for periodic solutions of nonautonomous second-order differential inclusions systems with p-Laplacian
Resumo:
A generalization of the predictive relativistic mechanics is studied where the initial conditions are taken on a general hypersurface of M4. The induced realizations of the Poincar group are obtained. The same procedure is used for the Galileo group. Noninteraction theorems are derived for both groups.
Resumo:
Some oscillation criteria for solutions of a general perturbed second order ordinary differential equation with damping (r(t)x′ (t))′ + h(t)f (x)x′ (t) + ψ(t, x) = H(t, x(t), x′ (t)) with alternating coefficients are given. The results obtained improve and extend some existing results in the literature.
Resumo:
2000 Mathematics Subject Classification: 34C10, 34C15.