988 resultados para Scheduling Problems
Resumo:
This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this work is to present an alternative boundary element method (BEM) formulation for the static analysis of three-dimensional non-homogeneous isotropic solids. These problems can be solved using the classical boundary element formulation, analyzing each subregion separately and then joining them together by introducing equilibrium and displacements compatibility. Establishing relations between the displacement fundamental solutions of the different domains, the alternative technique proposed in this paper allows analyzing all the domains as one unique solid, not requiring equilibrium or compatibility equations. This formulation also leads to a smaller system of equations when compared to the usual subregion technique, and the results obtained are even more accurate. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper presents results of research into the use of the Bellman-Zadeh approach to decision making in a fuzzy environment for solving multicriteria power engineering problems. The application of the approach conforms to the principle of guaranteed result and provides constructive lines in computationally effective obtaining harmonious solutions on the basis of solving associated maxmin problems. The presented results are universally applicable and are already being used to solve diverse classes of power engineering problems. It is illustrated by considering problems of power and energy shortage allocation, power system operation, optimization of network configuration in distribution systems, and energetically effective voltage control in distribution systems. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper the dynamic solutions of two non-steady seepage problems are discussed. It is shown that the acceleration term in the equation of motion is important for a correct qualitative description of the flow.
Resumo:
Pipeline systems play a key role in the petroleum business. These operational systems provide connection between ports and/or oil fields and refineries (upstream), as well as between these and consumer markets (downstream). The purpose of this work is to propose a novel MINLP formulation based on a continuous time representation for the scheduling of multiproduct pipeline systems that must supply multiple consumer markets. Moreover, it also considers that the pipeline operates intermittently and that the pumping costs depend on the booster stations yield rates, which in turn may generate different flow rates. The proposed continuous time representation is compared with a previously developed discrete time representation [Rejowski, R., Jr., & Pinto, J. M. (2004). Efficient MILP formulations and valid cuts for multiproduct pipeline scheduling. Computers and Chemical Engineering, 28, 1511] in terms of solution quality and computational performance. The influence of the number of time intervals that represents the transfer operation is studied and several configurations for the booster stations are tested. Finally, the proposed formulation is applied to a larger case, in which several booster configurations with different numbers of stages are tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the non-preemptive single machine scheduling problem to minimize total tardiness. We are interested in the online version of this problem, where orders arrive at the system at random times. Jobs have to be scheduled without knowledge of what jobs will come afterwards. The processing times and the due dates become known when the order is placed. The order release date occurs only at the beginning of periodic intervals. A customized approximate dynamic programming method is introduced for this problem. The authors also present numerical experiments that assess the reliability of the new approach and show that it performs better than a myopic policy.
Resumo:
Vessel dynamic positioning (DP) systems are based on conventional PID-type controllers and an extended Kalman filter. However, they present a difficult tuning procedure, and the closed-loop performance varies with environmental or loading conditions since the dynamics of the vessel are eminently nonlinear. Gain scheduling is normally used to address the nonlinearity of the system. To overcome these problems, a sliding mode control was evaluated. This controller is robust to variations in environmental and loading conditions, it maintains performance and stability for a large range of conditions, and presents an easy tuning methodology. The performance of the controller was evaluated numerically and experimentally in order to address its effectiveness. The results are compared with those obtained from conventional PID controller. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The representation of sustainability concerns in industrial forests management plans, in relation to environmental, social and economic aspects, involve a great amount of details when analyzing and understanding the interaction among these aspects to reduce possible future impacts. At the tactical and operational planning levels, methods based on generic assumptions usually provide non-realistic solutions, impairing the decision making process. This study is aimed at improving current operational harvesting planning techniques, through the development of a mixed integer goal programming model. This allows the evaluation of different scenarios, subject to environmental and supply constraints, increase of operational capacity, and the spatial consequences of dispatching harvest crews to certain distances over the evaluation period. As a result, a set of performance indicators was selected to evaluate all optimal solutions provided to different possible scenarios and combinations of these scenarios, and to compare these outcomes with the real results observed by the mill in the study case area. Results showed that it is possible to elaborate a linear programming model that adequately represents harvesting limitations, production aspects and environmental and supply constraints. The comparison involving the evaluated scenarios and the real observed results showed the advantage of using more holistic approaches and that it is possible to improve the quality of the planning recommendations using linear programming techniques.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
A piecewise uniform fitted mesh method turns out to be sufficient for the solution of a surprisingly wide variety of singularly perturbed problems involving steep gradients. The technique is applied to a model of adsorption in bidisperse solids for which two fitted mesh techniques, a fitted-mesh finite difference method (FMFDM) and fitted mesh collocation method (FMCM) are presented. A combination (FMCMD) of FMCM and the DASSL integration package is found to be most effective in solving the problems. Numerical solutions (FMFDM and FMCMD) were found to match the analytical solution when the adsorption isotherm is linear, even under conditions involving steep gradients for which global collocation fails. In particular, FMCMD is highly efficient for macropore diffusion control or micropore diffusion control. These techniques are simple and there is no limit on the range of the parameters. The techniques can be applied to a variety of adsorption and desorption problems in bidisperse solids with non-linear isotherm and for arbitrary particle geometry.
Resumo:
P-representation techniques, which have been very successful in quantum optics and in other fields, are also useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation. We introduce a representation called the gauge P representation, which greatly widens the range of tractable problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting equations, and make a comparison to related recent developments.
Resumo:
We give conditions on f involving pairs of lower and upper solutions which lead to the existence of at least three solutions of the two point boundary value problem y" + f(x, y, y') = 0, x epsilon [0, 1], y(0) = 0 = y(1). In the special case f(x, y, y') = f(y) greater than or equal to 0 we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and of Lakshmikantham et al.
Resumo:
We are concerned with determining values of, for which there exist nodal solutions of the boundary value problems u" + ra(t) f(u) = 0, 0 < t < 1, u(O) = u(1) = 0. The proof of our main result is based upon bifurcation techniques.
Resumo:
Simple techniques are presented for rearrangement of an infinite series in a systematic way such that the convergence of the resulting expression is accelerated. These procedures also allow calculation of required boundary derivatives. Several examples of conduction and diffusion-reaction problems illustrate the methods.