967 resultados para Scenario
Resumo:
Competing water demands for household consumption as well as the production of food, energy, and other uses pose challenges for water supply and sustainable development in many parts of the world. Designing creative strategies and learning processes for sustainable water governance is thus of prime importance. While this need is uncontested, suitable approaches still have to be found. In this article we present and evaluate a conceptual approach to scenario building aimed at transdisciplinary learning for sustainable water governance. The approach combines normative, explorative, and participatory scenario elements. This combination allows for adequate consideration of stakeholders’ and scientists’ systems, target, and transformation knowledge. Application of the approach in the MontanAqua project in the Swiss Alps confirmed its high potential for co-producing new knowledge and establishing a meaningful and deliberative dialogue between all actors involved. The iterative and combined approach ensured that stakeholders’ knowledge was adequately captured, fed into scientific analysis, and brought back to stakeholders in several cycles, thereby facilitating learning and co-production of new knowledge relevant for both stakeholders and scientists. However, the approach also revealed a number of constraints, including the enormous flexibility required of stakeholders and scientists in order for them to truly engage in the co-production of new knowledge. Overall, the study showed that shifts from strategic to communicative action are possible in an environment of mutual trust. This ultimately depends on creating conditions of interaction that place scientists’ and stakeholders’ knowledge on an equal footing.
Resumo:
BACKGROUND Efficiently performed basic life support (BLS) after cardiac arrest is proven to be effective. However, cardiopulmonary resuscitation (CPR) is strenuous and rescuers' performance declines rapidly over time. Audio-visual feedback devices reporting CPR quality may prevent this decline. We aimed to investigate the effect of various CPR feedback devices on CPR quality. METHODS In this open, prospective, randomised, controlled trial we compared three CPR feedback devices (PocketCPR, CPRmeter, iPhone app PocketCPR) with standard BLS without feedback in a simulated scenario. 240 trained medical students performed single rescuer BLS on a manikin for 8min. Effective compression (compressions with correct depth, pressure point and sufficient decompression) as well as compression rate, flow time fraction and ventilation parameters were compared between the four groups. RESULTS Study participants using the PocketCPR performed 17±19% effective compressions compared to 32±28% with CPRmeter, 25±27% with the iPhone app PocketCPR, and 35±30% applying standard BLS (PocketCPR vs. CPRmeter p=0.007, PocketCPR vs. standard BLS p=0.001, others: ns). PocketCPR and CPRmeter prevented a decline in effective compression over time, but overall performance in the PocketCPR group was considerably inferior to standard BLS. Compression depth and rate were within the range recommended in the guidelines in all groups. CONCLUSION While we found differences between the investigated CPR feedback devices, overall BLS quality was suboptimal in all groups. Surprisingly, effective compression was not improved by any CPR feedback device compared to standard BLS. All feedback devices caused substantial delay in starting CPR, which may worsen outcome.
Resumo:
Background: The Swiss pig population enjoys a favourable health situation. To further promote this, the Pig Health Service (PHS) conducts a surveillance program in affiliated herds: closed multiplier herds with the highest PHS-health and hygiene status have to be free from swine dysentery and progressive atrophic rhinitis and are clinically examined four times a year, including laboratory testing. Besides, four batches of pigs per year are fattened together with pigs from other herds and checked for typical symptoms (monitored fattening groups (MF)). While costly and laborious, little was known about the effectiveness of the surveillance to detect an infection in a herd. Therefore, the sensitivity of the surveillance for progressive atrophic rhinitis and swine dysentery at herd level was assessed using scenario tree modelling, a method well established at national level. Furthermore, its costs and the time until an infection would be detected were estimated, with the final aim of yielding suggestions how to optimize surveillance. Results: For swine dysentery, the median annual surveillance sensitivity was 96.7 %, mean time to detection 4.4 months, and total annual costs 1022.20 Euro/herd. The median component sensitivity of active sampling was between 62.5 and 77.0 %, that of a MF between 7.2 and 12.7 %. For progressive atrophic rhinitis, the median surveillance sensitivity was 99.4 %, mean time to detection 3.1 months and total annual costs 842.20 Euro. The median component sensitivity of active sampling was 81.7 %, that of a MF between 19.4 and 38.6 %. Conclusions: Results indicate that total sensitivity for both diseases is high, while time to detection could be a risk in herds with frequent pig trade. From all components, active sampling had the highest contribution to the surveillance sensitivity, whereas that of MF was very low. To increase efficiency, active sampling should be intensified (more animals sampled) and MF abandoned. This would significantly improve sensitivity and time to detection at comparable or lower costs. The method of scenario tree modelling proved useful to assess the efficiency of surveillance at herd level. Its versatility allows adjustment to all kinds of surveillance scenarios to optimize sensitivity, time to detection and/or costs.
Resumo:
Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey uncertainties inherent to spatial data and analysis.
Resumo:
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by 20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
Resumo:
In the present uncertain global context of reaching an equal social stability and steady thriving economy, power demand expected to grow and global electricity generation could nearly double from 2005 to 2030. Fossil fuels will remain a significant contribution on this energy mix up to 2050, with an expected part of around 70% of global and ca. 60% of European electricity generation. Coal will remain a key player. Hence, a direct effect on the considered CO2 emissions business-as-usual scenario is expected, forecasting three times the present CO2 concentration values up to 1,200ppm by the end of this century. Kyoto protocol was the first approach to take global responsibility onto CO2 emissions monitoring and cap targets by 2012 with reference to 1990. Some of principal CO2emitters did not ratify the reduction targets. Although USA and China spur are taking its own actions and parallel reduction measures. More efficient combustion processes comprising less fuel consuming, a significant contribution from the electricity generation sector to a CO2 dwindling concentration levels, might not be sufficient. Carbon Capture and Storage (CCS) technologies have started to gain more importance from the beginning of the decade, with research and funds coming out to drive its come in useful. After first researching projects and initial scale testing, three principal capture processes came out available today with first figures showing up to 90% CO2 removal by its standard applications in coal fired power stations. Regarding last part of CO2 reduction chain, two options could be considered worthy, reusing (EOR & EGR) and storage. The study evaluates the state of the CO2 capture technology development, availability and investment cost of the different technologies, with few operation cost analysis possible at the time. Main findings and the abatement potential for coal applications are presented. DOE, NETL, MIT, European universities and research institutions, key technology enterprises and utilities, and key technology suppliers are the main sources of this study. A vision of the technology deployment is presented.
Resumo:
This paper shows the role that some foresight tools, such as scenario design, may play in exploring the future impacts of global challenges in our contemporary Society. Additionally, it provides some clues about how to reinforce scenario design so that it displays more in-depth analysis without losing its qualitative nature and communication advantages. Since its inception in the early seventies, scenario design has become one of the most popular foresight tools used in several fields of knowledge. Nevertheless, its wide acceptance has not been seconded by the urban planning academic and professional realm. In some instances, scenario design is just perceived as a story telling technique that generates oversimplified future visions without the support of rigorous and sound analysis. As a matter of fact, the potential of scenario design for providing more in-depth analysis and for connecting with quantitative methods has been generally missed, giving arguments away to its critics. Based on these premises, this document tries to prove the capability of scenario design to anticipate the impacts of complex global challenges and to do it in a more analytical way. These assumptions are tested through a scenario design exercise which explores the future evolution of the sustainable development paradigm (SD) and its implications in the Spanish urban development model. In order to reinforce the perception of scenario design as a useful and added value instrument to urban planners, three sets of implications –functional, parametric and spatial— are displayed to provide substantial and in-depth information for policy makers. This study shows some major findings. First, it is feasible to set up a systematic approach that provides anticipatory intelligence about future disruptive events that may affect the natural environment and socioeconomic fabric of a given territory. Second, there are opportunities for innovating in the Spanish urban planning processes and city governance models. Third, as a foresight tool, scenario design can be substantially reinforced if proper efforts are made to display functional, parametric and spatial implications generated by the scenarios. Fourth, the study confirms that foresight offers interesting opportunities for urban planners, such as anticipating changes, formulating visions, fostering participation and building networks
Resumo:
We propose to study the stability properties of an air flow wake forced by a dielectric barrier discharge (DBD) actuator, which is a type of electrohydrodynamic (EHD) actuator. These actuators add momentum to the flow around a cylinder in regions close to the wall and, in our case, are symmetrically disposed near the boundary layer separation point. Since the forcing frequencies, typical of DBD, are much higher than the natural shedding frequency of the flow, we will be considering the forcing actuation as stationary. In the first part, the flow around a circular cylinder modified by EHD actuators will be experimentally studied by means of particle image velocimetry (PIV). In the second part, the EHD actuators have been numerically implemented as a boundary condition on the cylinder surface. Using this boundary condition, the computationally obtained base flow is then compared with the experimental one in order to relate the control parameters from both methodologies. After validating the obtained agreement, we study the Hopf bifurcation that appears once the flow starts the vortex shedding through experimental and computational approaches. For the base flow derived from experimentally obtained snapshots, we monitor the evolution of the velocity amplitude oscillations. As to the computationally obtained base flow, its stability is analyzed by solving a global eigenvalue problem obtained from the linearized Navier–Stokes equations. Finally, the critical parameters obtained from both approaches are compared.
Resumo:
World Health Organization actively stresses the importance of health, nutrition and well-being of the mother to foster children development. This issue is critical in the rural areas of developing countries where monitoring of health status of children is hardly performed since population suffers from a lack of access to health care. The aim of this research is to design, implement and deploy an e-health information and communication system to support health care in 26 rural communities of Cusmapa, Nicaragua. The final solution consists of an hybrid WiMAX/WiFi architecture that provides good quality communications through VoIP taking advantage of low cost WiFi mobile devices. Thus, a WiMAX base station was installed in the health center to provide a radio link with the rural health post "El Carrizo" sited 7,4 km. in line of sight. This service makes possible personal broadband voice and data communication facilities with the health center based on WiFi enabled devices such as laptops and cellular phones without communications cost. A free software PBX was installed at "San José de Cusmapa" health care site to enable communications for physicians, nurses and a technician through mobile telephones with IEEE 802.11 b/g protocol and SIP provided by the project. Additionally, the rural health post staff (midwives, brigade) received two mobile phones with these same features. In a complementary way, the deployed health information system is ready to analyze the distribution of maternal-child population at risk and the distribution of diseases on a geographical baseline. The system works with four information layers: fertile women, children, people with disabilities and diseases. Thus, authorized staff can obtain reports about prenatal monitoring tasks, status of the communities, malnutrition, and immunization control. Data need to be updated by health care staff in order to timely detect the source of problem to implement measures addressed to alleviate and improve health status population permanently. Ongoing research is focused on a mobile platform that collects and automatically updates in the information system, the height and weight of the children locally gathered in the remote communities. This research is being granted by the program Millennium Rural Communities of the Technical University of Madrid.
Resumo:
Time series are proficiently converted into graphs via the horizontal visibility (HV) algorithm, which prompts interest in its capability for capturing the nature of different classes of series in a network context. We have recently shown [B. Luque et al., PLoS ONE 6, 9 (2011)] that dynamical systems can be studied from a novel perspective via the use of this method. Specifically, the period-doubling and band-splitting attractor cascades that characterize unimodal maps transform into families of graphs that turn out to be independent of map nonlinearity or other particulars. Here, we provide an in depth description of the HV treatment of the Feigenbaum scenario, together with analytical derivations that relate to the degree distributions, mean distances, clustering coefficients, etc., associated to the bifurcation cascades and their accumulation points. We describe how the resultant families of graphs can be framed into a renormalization group scheme in which fixed-point graphs reveal their scaling properties. These fixed points are then re-derived from an entropy optimization process defined for the graph sets, confirming a suggested connection between renormalization group and entropy optimization. Finally, we provide analytical and numerical results for the graph entropy and show that it emulates the Lyapunov exponent of the map independently of its sign.
Resumo:
We address a cognitive radio scenario, where a number of secondary users performs identification of which primary user, if any, is trans- mitting, in a distributed way and using limited location information. We propose two fully distributed algorithms: the first is a direct iden- tification scheme, and in the other a distributed sub-optimal detection based on a simplified Neyman-Pearson energy detector precedes the identification scheme. Both algorithms are studied analytically in a realistic transmission scenario, and the advantage obtained by detec- tion pre-processing is also verified via simulation. Finally, we give details of their fully distributed implementation via consensus aver- aging algorithms.
Resumo:
The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed. Calculations are performed with the Monte Carlo transport-coupled depletion code SERPENT together with post-processing tools.
Resumo:
Análisis de los principales factores de cambio que previsiblemente incidirán en los destinos turísticos de sol y playa en un escenario de bajo crecimiento.
Resumo:
La planificación de la movilidad sostenible urbana es una tarea compleja que implica un alto grado de incertidumbre debido al horizonte de planificación a largo plazo, la amplia gama de paquetes de políticas posibles, la necesidad de una aplicación efectiva y eficiente, la gran escala geográfica, la necesidad de considerar objetivos económicos, sociales y ambientales, y la respuesta del viajero a los diferentes cursos de acción y su aceptabilidad política (Shiftan et al., 2003). Además, con las tendencias inevitables en motorización y urbanización, la demanda de terrenos y recursos de movilidad en las ciudades está aumentando dramáticamente. Como consecuencia de ello, los problemas de congestión de tráfico, deterioro ambiental, contaminación del aire, consumo de energía, desigualdades en la comunidad, etc. se hacen más y más críticos para la sociedad. Esta situación no es estable a largo plazo. Para enfrentarse a estos desafíos y conseguir un desarrollo sostenible, es necesario considerar una estrategia de planificación urbana a largo plazo, que aborde las necesarias implicaciones potencialmente importantes. Esta tesis contribuye a las herramientas de evaluación a largo plazo de la movilidad urbana estableciendo una metodología innovadora para el análisis y optimización de dos tipos de medidas de gestión de la demanda del transporte (TDM). La metodología nueva realizado se basa en la flexibilización de la toma de decisiones basadas en utilidad, integrando diversos mecanismos de decisión contrariedad‐anticipada y combinados utilidad‐contrariedad en un marco integral de planificación del transporte. La metodología propuesta incluye dos aspectos principales: 1) La construcción de escenarios con una o varias medidas TDM usando el método de encuesta que incorpora la teoría “regret”. La construcción de escenarios para este trabajo se hace para considerar específicamente la implementación de cada medida TDM en el marco temporal y marco espacial. Al final, se construyen 13 escenarios TDM en términos del más deseable, el más posible y el de menor grado de “regret” como resultado de una encuesta en dos rondas a expertos en el tema. 2) A continuación se procede al desarrollo de un marco de evaluación estratégica, basado en un Análisis Multicriterio de Toma de Decisiones (Multicriteria Decision Analysis, MCDA) y en un modelo “regret”. Este marco de evaluación se utiliza para comparar la contribución de los distintos escenarios TDM a la movilidad sostenible y para determinar el mejor escenario utilizando no sólo el valor objetivo de utilidad objetivo obtenido en el análisis orientado a utilidad MCDA, sino también el valor de “regret” que se calcula por medio del modelo “regret” MCDA. La función objetivo del MCDA se integra en un modelo de interacción de uso del suelo y transporte que se usa para optimizar y evaluar los impactos a largo plazo de los escenarios TDM previamente construidos. Un modelo de “regret”, llamado “referencedependent regret model (RDRM)” (modelo de contrariedad dependiente de referencias), se ha adaptado para analizar la contribución de cada escenario TDM desde un punto de vista subjetivo. La validación de la metodología se realiza mediante su aplicación a un caso de estudio en la provincia de Madrid. La metodología propuesta define pues un procedimiento técnico detallado para la evaluación de los impactos estratégicos de la aplicación de medidas de gestión de la demanda en el transporte, que se considera que constituye una herramienta de planificación útil, transparente y flexible, tanto para los planificadores como para los responsables de la gestión del transporte. Planning sustainable urban mobility is a complex task involving a high degree of uncertainty due to the long‐term planning horizon, the wide spectrum of potential policy packages, the need for effective and efficient implementation, the large geographical scale, the necessity to consider economic, social, and environmental goals, and the traveller’s response to the various action courses and their political acceptability (Shiftan et al., 2003). Moreover, with the inevitable trends on motorisation and urbanisation, the demand for land and mobility in cities is growing dramatically. Consequently, the problems of traffic congestion, environmental deterioration, air pollution, energy consumption, and community inequity etc., are becoming more and more critical for the society (EU, 2011). Certainly, this course is not sustainable in the long term. To address this challenge and achieve sustainable development, a long‐term perspective strategic urban plan, with its potentially important implications, should be established. This thesis contributes on assessing long‐term urban mobility by establishing an innovative methodology for optimizing and evaluating two types of transport demand management measures (TDM). The new methodology aims at relaxing the utility‐based decision‐making assumption by embedding anticipated‐regret and combined utilityregret decision mechanisms in an integrated transport planning framework. The proposed methodology includes two major aspects: 1) Construction of policy scenarios within a single measure or combined TDM policy‐packages using the survey method incorporating the regret theory. The purpose of building the TDM scenarios in this work is to address the specific implementation in terms of time frame and geographic scale for each TDM measure. Finally, 13 TDM scenarios are built in terms of the most desirable, the most expected and the least regret choice by means of the two‐round Delphi based survey. 2) Development of the combined utility‐regret analysis framework based on multicriteria decision analysis (MCDA). This assessment framework is used to compare the contribution of the TDM scenario towards sustainable mobility and to determine the best scenario considering not only the objective utility value obtained from the utilitybased MCDA, but also a regret value that is calculated via a regret‐based MCDA. The objective function of the utility‐based MCDA is integrated in a land use and transport interaction model and is used for optimizing and assessing the long term impacts of the constructed TDM scenarios. A regret based model, called referente dependent regret model (RDRM) is adapted to analyse the contribution of each TDM scenario in terms of a subjective point of view. The suggested methodology is implemented and validated in the case of Madrid. It defines a comprehensive technical procedure for assessing strategic effects of transport demand management measures, which can be useful, transparent and flexible planning tool both for planners and decision‐makers.