939 resultados para Satellite solar power stations.
Resumo:
Tämän diplomityön tavoitteena on selvittää Kymenlaakson Opiston energiatehokkuuden parantamista ja tutkia onko olemassa selvästi taloudellisempi sekä ekologisempi tapa kattaa Opiston lämmitystarve verrattuna nykyisin käytössä olevaan kaukolämpöön. Työn teoriaosuudessa tehdään katsaus rakennusten energiatehokkuuteen vaikuttaviin seikkoihin, lähienergian tuotantoon ja energiatehokkuuden parantamiseen liittyvään lainsäädäntöön ja säädöksiin. Useasta rakennuksesta koostuva kansanopisto tarjoaa mielenkiintoisen pohjan selvitystyölle ja suuri lämmitystehontarve yhdistettynä monille saneerauskohteille tyypillisiin ahtaisiin teknisiin tiloihin asettaa rajoituksia lämmitysjärjestelmän suunnittelulle. Soveltavassa osuudessa määritellään reunaehdot mahdolliselle kaukolämmön korvaavalle lämmitysratkaisulle. Tutkitaan vesistölämmön hyödyntämisen mahdollisuutta ja lasketaan aurinkosähkön ja -lämmön tuotantopotentiaalia. Maalämpöjärjestelmän mitoituksessa ja taloudellisessa vertailussa käytettiin apuna maalämpöjärjestelmiä toimittavia yrityksiä. Työssä saatujen tulosten perusteella maalämpöjärjestelmä on taloudellisesti kannattava isossa kohteessa, tosin järjestelmän asennukseen liittyy ahtaiden tilojen johdosta ongelmia. Maalämpö on myös selvästi ekologisempi, kuin nykyisin käytössä oleva kaukolämpö. Aurinkosähkön tuotannolle on Kymenlaakson Opistolla hyvä potentiaali ja sähkön tuotanto kohtaa hyvin sähkön käytön.
Resumo:
L’objecte del projecte és dissenyar una central productora d’energia elèctrica a través d’una turbina de vapor i un generador acoblat a aquesta, mitjançant concentradors d’energia solar cilindro-parabòlics. Aquests concentradors captaran la radiació directa del sol per concentrar-la al focus de la paràbola, on s’hi col·locarà un receptor per l’interior del qual hi passarà un fluid que s’escalfarà gràcies a aquests raigs concentrats. En el projecte s’ha dissenyat la instal·lació i estudiat la radiació disponible a la zona, s’ha realitzat un estudi de la viabilitat de la instal·lació necessària i del cost econòmic d’una central d’energia termoelèctrica fictícia a la zona de Tarragona
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
Almost all the electricity currently produced in the UK is generated as part of a centralised power system designed around large fossil fuel or nuclear power stations. This power system is robust and reliable but the efficiency of power generation is low, resulting in large quantities of waste heat. The principal aim of this paper is to investigate an alternative concept: the energy production by small scale generators in close proximity to the energy users, integrated into microgrids. Microgrids—de-centralised electricity generation combined with on-site production of heat—bear the promise of substantial environmental benefits, brought about by a higher energy efficiency and by facilitating the integration of renewable sources such as photovoltaic arrays or wind turbines. By virtue of good match between generation and load, microgrids have a low impact on the electricity network, despite a potentially significant level of generation by intermittent energy sources. The paper discusses the technical and economic issues associated with this novel concept, giving an overview of the generator technologies, the current regulatory framework in the UK, and the barriers that have to be overcome if microgrids are to make a major contribution to the UK energy supply. The focus of this study is a microgrid of domestic users powered by small Combined Heat and Power generators and photovoltaics. Focusing on the energy balance between the generation and load, it is found that the optimum combination of the generators in the microgrid- consisting of around 1.4 kWp PV array per household and 45% household ownership of micro-CHP generators- will maintain energy balance on a yearly basis if supplemented by energy storage of 2.7 kWh per household. We find that there is no fundamental technological reason why microgrids cannot contribute an appreciable part of the UK energy demand. Indeed, an estimate of cost indicates that the microgrids considered in this study would supply electricity at a cost comparable with the present electricity supply if the current support mechanisms for photovoltaics were maintained. Combining photovoltaics and micro-CHP and a small battery requirement gives a microgrid that is independent of the national electricity network. In the short term, this has particular benefits for remote communities but more wide-ranging possibilities open up in the medium to long term. Microgrids could meet the need to replace current generation nuclear and coal fired power stations, greatly reducing the demand on the transmission and distribution network.
Resumo:
Concentrated solar power systems are expected to be sited in desert locations where the direct normal irradiation is above 1800 kWh/m2.year. These systems include large solar collector assemblies, which account for a significant share of the investment cost. Solarreflectors are the main components of these solar collector assemblies and dust/sand storms may affect their reflectance properties, either by soiling or by surface abrasion. While soiling can be reverted by cleaning, surface abrasion is a non reversible degradation.The aim of this project was to study the accelerated aging of second surface silvered thickglass solar reflectors under simulated sandstorm conditions and develop a multi-parametric model which relates the specular reflectance loss to dust/sand storm parameters: wind velocity, dust concentration and time of exposure. This project focused on the degradation caused by surface abrasion.Sandstorm conditions were simulated in a prototype environmental test chamber. Material samples (6cm x 6cm) were exposed to Arizona coarse test dust. The dust stream impactedthese material samples at a perpendicular angle. Both wind velocity and dust concentrationwere maintained at a stable level for each accelerated aging test. The total exposure time in the test chamber was limited to 1 hour. Each accelerated aging test was interrupted every 4 minutes to measure the specular reflectance of the material sample after cleaning.The accelerated aging test campaign had to be aborted prematurely due to a contamination of the dust concentration sensor. A robust multi-parametric degradation model could thus not be derived. The experimental data showed that the specular reflectance loss decreasedeither linearly or exponentially with exposure time, so that a degradation rate could be defined as a single modeling parameter. A correlation should be derived to relate this degradation rate to control parameters such as wind velocity and dust/sand concentration.The sandstorm chamber design would have to be updated before performing further accelerated aging test campaigns. The design upgrade should improve both the reliability of the test equipment and the repeatability of accelerated aging tests. An outdoor exposure test campaign should be launched in deserts to learn more about the intensity, frequencyand duration of dust/sand storms. This campaign would also serve to correlate the results of outdoor exposure tests with accelerated exposure tests in order to develop a robust service lifetime prediction model for different types of solar reflector materials.
Resumo:
Este artigo apresenta os principais resultados e o detalhamento da metodologia e equações de controle de um retificador monofásico pré-regulador de 150kW para sistema trólebus. A estrutura proposta possibilita a Correção ativa do Fator de Potência (CFP) com baixos níveis de Distorção Harmônica Total (DHT) na corrente, em conformidade com a norma internacional IEC 61000-3-4. Fruto de um projeto de Pesquisa, Desenvolvimento e Inovação (P) junto à empresa AES Eletropaulo Metropolitana de São Paulo, em parceria com a empresa de transporte Himalaia S.A., o projeto possui como principais objetivos estimular o interesse para a expansão das linhas de trólebus a partir de uma plataforma de alimentação de menor custo de instalação e manutenção, sem a necessidade de subestações retificadoras, e, com vistas a promover a melhoria da qualidade de vida nos grandes centros urbanos. Nessa nova modalidade proposta para o sistema de alimentação, o trólebus pode ser alimentado tanto pelas redes convencionais em corrente contínua (CC) quanto pelas redes de distribuição em corrente alternada (CA), mantendo-se a disposição a dois fios dos sistemas CC, sendo as mudanças de rede de alimentação (CC ou CA) monitoradas e controladas digitalmente. Todo o sistema de gerenciamento e controle do conversor é realizado digitalmente por FPGA XC3S200. Na evolução do sistema proposto, os autores pretendem inclusive eliminar as linhas aéreas de alimentação, através da utilização de postos de alimentação em CA, especialmente desenvolvidos para os pontos de embarque/desembarque de passageiros para este veículo de transporte coletivo, eliminando-se os aspectos visuais negativos das redes de alimentação deste modal, e, reduzindo-se as falhas de operação do sistema.
Resumo:
A implantação de microcentrais hidrelétricas é uma das alternativas para suprir com energia comunidades pequenas e isoladas, situadas normalmente na área rural. O aproveitamento de potenciais hidráulicos de pequeno porte é uma alternativa cada vez mais viável devido não só à falta de recursos financeiros para os grandes empreendimentos, mas também pelo imenso potencial de geração em centrais de pequeno porte, que pouco tem sido aproveitado. O objetivo deste trabalho foi de apresentar uma metodologia simples de engenharia para estimar o custo das Bombas Funcionando como Turbinas (BFTs) utilizadas em microcentrais hidrelétricas, que possam ser usadas em estudos preliminares de novos aproveitamentos hidrelétricos, sem uma investigação detalhada dos lugares onde se pretende implantar. Os custos foram obtidos consultando-se diretamente os fabricantes de equipamentos e o mercado da praça de Ponta Grossa - PR. Os resultados mostraram que, para as microcentrais hidrelétricas, sempre que os custos constituírem o aspecto dominante, e para potências até 50 kW, a opção por Bombas Funcionando como Turbinas (BFTs) deve ser considerada em lugar das turbinas hidráulicas.
Resumo:
Incluye Bibliografía
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
The best description of water resources for Grand Turk was offered by Pérez Monteagudo (2000) who suggested that rain water was insufficient to ensure a regular water supply although water catchment was being practised and water catchment possibilities had been analysed. Limestone islands, mostly flat and low lying, have few possibilities for large scale surface storage, and groundwater lenses exist in very delicate equilibrium with saline seawater, and are highly likely to collapse due to sea level rise, improper extraction, drought, tidal waves or other extreme event. A study on the impact of climate change on water resources in the Turks and Caicos Islands is a challenging task, due to the fact that the territory of the Islands covers different environmental resources and conditions, and accurate data are lacking. The present report is based on collected data wherever possible, including grey data from several sources such as the Intergovernmental Panel on Climate Change (IPCC) and Cuban meteorological service data sets. Other data were also used, including the author’s own estimates and modelling results. Although challenging, this was perhaps the best approach towards analysing the situation. Furthermore, IPCC A2 and B2 scenarios were used in the present study in an effort to reduce uncertainty. The main conclusion from the scenario approach is that the trend observed in precipitation during the period 1961 - 1990 is decreasing. Similar behaviour was observed in the Caribbean region. This trend is associated with meteorological causes, particularly with the influence of the North Atlantic Anticyclone. The annual decrease in precipitation is estimated to be between 30-40% with uncertain impacts on marine resources. After an assessment of fresh water resources in Turks and Caicos Islands, the next step was to estimate residential water demand based on a high fertility rate scenario for the Islands (one selected from four scenarios and compared to countries having similar characteristics). The selected scenario presents higher projections on consumption growth, enabling better preparation for growing water demand. Water demand by tourists (stopover and excursionists, mainly cruise passengers) was also obtained, based on international daily consumption estimates. Tourism demand forecasts for Turks and Caicos Islands encompass the forty years between 2011 and 2050 and were obtained by means of an Artificial Neural Networks approach. for the A2 and B2 scenarios, resulting in the relation BAU>B2>A2 in terms of tourist arrivals and water demand levels from tourism. Adaptation options and policies were analysed. Resolving the issue of the best technology to be used for Turks and Caicos Islands is not directly related to climate change. Total estimated water storage capacity is about 1, 270, 800 m3/ year with 80% capacity load for three plants. However, almost 11 desalination plants have been detected on Turks and Caicos Islands. Without more data, it is not possible to estimate long term investment to match possible water demand and more complex adaptation options. One climate change adaptation option would be the construction of elevated (30 metres or higher) storm resistant water reservoirs. The unit cost of the storage capacity is the sum of capital costs and operational and maintenance costs. Electricity costs to pump water are optional as water should, and could, be stored for several months. The costs arising for water storage are in the range of US$ 0.22 cents/m3 without electricity costs. Pérez Monteagudo (2000) estimated water prices at around US$ 2.64/m3 in stand points, US$ 7.92 /m3 for government offices, and US$ 13.2 /m3for cistern truck vehicles. These data need to be updated. As Turks and Caicos Islands continues to depend on tourism and Reverse Osmosis (RO) for obtaining fresh water, an unavoidable condition to maintaining and increasing gross domestic product(GDP) and population welfare, dependence on fossil fuels and vulnerability to increasingly volatile prices will constitute an important restriction. In this sense, mitigation supposes a synergy with adaptation. Energy demand and emissions of carbon dioxide (CO2) were also estimated using an emissions factor of 2. 6 tCO2/ tonne of oil equivalent (toe). Assuming a population of 33,000 inhabitants, primary energy demand was estimated for Turks and Caicos Islands at 110,000 toe with electricity demand of around 110 GWh. The business as usual (BAU), as well as the mitigation scenarios were estimated. The BAU scenario suggests that energy use should be supported by imported fossil fuels with important improvements in energy efficiency. The mitigation scenario explores the use of photovoltaic and concentrating solar power, and wind energy. As this is a preliminary study, the local potential and locations need to be identified to provide more relevant estimates. Macroeconomic assumptions are the same for both scenarios. By 2050, Turks and Caicos Islands could demand 60 m toe less than for the BAU scenario.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
This work, based in a patent request at INPI, protocol no. 020110035974, presents a system development using solar panels to supply the electricity demand required by punctual loads, without a storage unit or utility grid synchronism, through a control circuit that allows parallel operation with the power grid during low sunlight incidence periods. A study about solar panel construction and topologies for Power generation was done, in a atempt to evalute impacts in project. This development was modular, providing the system the possibility of power capacity expansion and load diversity as well, in an attempt to reduce the total energy requirements from the residential sector drained from the power grid along the day
Resumo:
It is well known that the deposition of gaseous pollutants and aerosols plays a major role in causing the deterioration of monuments and built cultural heritage in European cities. Despite of many studies dedicated to the environmental damage of cultural heritage, in case of cement mortars, commonly used in the 20th century architecture, the deterioration due to air multipollutants impact, especially the formation of black crusts, is still not well explored making this issue a challenging area of research. This work centers on cement mortars – environment interactions, focusing on the diagnosis of the damage on the modern built heritage due to air multi-pollutants. For this purpose three sites, exposed to different urban areas in Europe, were selected for sampling and subsequent laboratory analyses: Centennial Hall, Wroclaw (Poland), Chiesa dell'Autostrada del Sole, Florence (Italy), Casa Galleria Vichi, Florence (Italy). The sampling sessions were performed taking into account the height from the ground level and protection from rain run off (sheltered, partly sheltered and exposed areas). The complete characterization of collected damage layer and underlying materials was performed using a range of analytical techniques: optical and scanning electron microscopy, X ray diffractometry, differential and gravimetric thermal analysis, ion chromatography, flash combustion/gas chromatographic analysis, inductively coupled plasma-optical emission spectrometer. The data were elaborated using statistical methods (i.e. principal components analyses) and enrichment factor for cement mortars was calculated for the first time. The results obtained from the experimental activity performed on the damage layers indicate that gypsum, due to the deposition of atmospheric sulphur compounds, is the main damage product at surfaces sheltered from rain run-off at Centennial Hall and Casa Galleria Vichi. By contrast, gypsum has not been identified in the samples collected at Chiesa dell'Autostrada del Sole. This is connected to the restoration works, particularly surface cleaning, regularly performed for the maintenance of the building. Moreover, the results obtained demonstrated the correlation between the location of the building and the composition of the damage layer: Centennial Hall is mainly undergoing to the impact of pollutants emitted from the close coal power stations, whilst Casa Galleria Vichi is principally affected by pollutants from vehicular exhaust in front of the building.