967 resultados para STRESS GRADIENT HYPOTHESIS
Resumo:
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 µatm, minimum Omega (arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 µatm, minimum Omega (arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 µatm, minimum Omega (arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.
Resumo:
A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17.5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37°C to 50°C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4°C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress
Resumo:
El concepto tradicional de reglas de ensamblaje refleja la idea de que las especies no co-ocurren al azar sino que están restringidos en su co-ocurrencia por la competencia interespecífica o por un filtrado ambiental. En está tesis abordé la importancia de los procesos que determinan el ensamble de la comunidad en la estructuración de los Bosques Secos en el Sur del Ecuador. Este estudio se realizó en la región biogeográfica Tumbesina, donde se encuentra la mayor concentración de bosques secos tropicales bien conservados del sur de Ecuador, y que constituyen una de las áreas de endemismo más importantes del mundo. El clima se caracteriza por una estación seca que va desde mayo a diciembre y una estación lluviosa de enero a abril, su temperatura anual varía entre 20°C y 26°C y una precipitación promedio anual entre 300 y 700 mm. Mi primer tema fue orientado a evaluar si la distribución de los rasgos funcionales a nivel comunitario es compatible con la existencia de un filtro ambiental (filtrado del hábitat) o con la existencia de un proceso de limitación de la semejanza funcional impuesta por la competencia inter-específica entre 58 especies de plantas leñosas repartidas en 109 parcelas (10x50m). Para ello, se analizó la distribución de los valores de cinco rasgos funcionales (altura máxima, densidad de la madera, área foliar específica, tamaño de la hoja y de masa de la semilla), resumida mediante varios estadísticos (rango, varianza, kurtosis y la desviación estándar de la distribución de distancias funcionales a la especies más próxima) y se comparó con la distribución esperada bajo un modelo nulo con ausencia de competencia. Los resultados obtenidos apoyan que tanto el filtrado ambiental como la limitación a la semejanza afectan el ensamble de las comunidades vegetales de los bosques secos Tumbesinos. Un segundo tema fue identificar si la diversidad funcional está condicionada por los gradientes ambientales, y en concreto si disminuye en los ambientes más estresantes a causa del filtrado ambiental, y si por el contrario aumenta en los ambientes más benignos donde la competencia se vuelve más importante, teniendo en cuenta las posibles modificaciones a este patrón general a causa de las interacciones de facilitación. Para abordar este estudio analizamos tanto las variaciones en la diversidad funcional (respecto a los de los cinco rasgos funcionales empleados en el primer capítulo de la tesis) como las variaciones de diversidad filogenética a lo largo de un gradiente de estrés climático en los bosques tumbesinos, y se contrastaron frente a las diversidades esperadas bajo un modelo de ensamblaje completamente aleatorio de la comunidad. Los análisis mostraron que tan sólo la diversidad de tamaños foliares siguió el patrón de variación esperado, disminuyendo a medida que aumentó el estrés abiótico mientras que ni el resto de rasgos funcionales ni la diversidad funcional multivariada ni la diversidad filogenética mostraron una variación significativa a lo largo del gradiente ambiental. Un tercer tema fue evaluar si los procesos que organizan la estructura funcional de la comunidad operan a diferentes escalas espaciales. Para ello cartografié todos los árboles y arbustos de más de 5 cm de diámetro en una parcela de 9 Ha de bosque seco y caractericé funcionalmente todas las especies. Dicha parcela fue dividida en subparcelas de diferente tamaño, obteniéndose subparcelas a seis escalas espaciales distintas. Los resultados muestran agregación de estrategias funcionales semejantes a escalas pequeñas, lo que sugiere la existencia bien de filtros ambientales actuando a escala fina o bien de procesos competitivos que igualan la estrategia óptima a dichas escalas. Finalmente con la misma información de la parcela permanente de 9 Ha. Nos propusimos evaluar el efecto y comportamiento de las especies respecto a la organización de la diversidad taxonómica, funcional y filogenética. Para ello utilicé tres funciones sumario espaciales: ISAR- para el nivel taxonómico, IFDAR para el nivel funcional y IPSVAR para el nivel filogenética y las contrastamos frente a modelos nulos que describen la distribución espacial de las especies individuales. Los resultados mostraron que en todas las escalas espaciales consideradas para ISAR, IFDAR y IPSVAR, la mayoría de las especies se comportaron como neutras, es decir, que están rodeados por la riqueza de diversidad semejante a la esperada. Sin embargo, algunas especies aparecieron como acumuladoras de diversidad funcional y filogenética, lo que sugiere su implicación en procesos competitivos de limitación de la semejanza. Una pequeña proporción de las especies apareció como repelente de la diversidad funcional y filogenética, lo que sugiere su implicación en un proceso de filtrado de hábitat. En este estudio pone de relieve cómo el análisis de las dimensiones alternativas de la biodiversidad, como la diversidad funcional y filogenética, puede ayudarnos a entender la co-ocurrencia de especies en diversos ensambles de comunidad. Todos los resultados de este estudio aportan nuevas evidencias de los procesos de ensamblaje de la comunidad de los Bosques Estacionalmente secos y como las variables ambientales y la competencia juegan un papel importante en la estructuración de la comunidad. ABSTRACT The traditional concept of the rules assembly for species communities reflects the idea that species do not co-occur at random but are restricted in their co-occurrence by interspecific competition or an environmental filter. In this thesis, I addressed the importance of the se processes in the assembly of plant communities in the dry forests of southern Ecuador. This study was conducted in the biogeographic region of Tumbesina has the largest concentration of well-conserved tropical dry forests of southern Ecuador, and is recognized as one of the most important areas of endemism in the world. The climate is characterized by a dry season from May to December and a rainy season from January to April. The annual temperature varies between 20 ° C and 26 ° C and an average annual rainfall between 300 and 700 mm. I first assessed whether the distribution of functional traits at the level of the community is compatible with the existence of an environmental filter (imposed by habitat) or the existence of a limitation on functional similarity imposed by interspecific competition. This analysis was conducted for 58 species of woody plants spread over 109 plots of 10 x 50 m. Specifically, I compared the distribution of values of five functional traits (maximum height, wood density, specific leaf area, leaf size and mass of the seed), via selected statistical properties (range, variance, kurtosis and analyzed the standard deviation of the distribution of the closest functional species) distances and compared with a expected distribution under a null model of no competition. The results support that both environmental filtering and a limitation on trait similarity affect the assembly of plant communities in dry forests Tumbesina. My second chapter evaluated whether variation in functional diversity is conditioned by environmental gradients. In particular, I tested whether it decreases in the most stressful environments because of environmental filters, or if, on the contrary, functional diversity is greater in more benign environments where competition becomes more important (notwithstanding possible changes to this general pattern due to facilitation). To address this theme I analyzed changes in both the functional diversity (maximum height, wood density, specific leaf area, leaf size and mass of the seed) and the phylogenetic diversity, along a gradient of climatic stress in Tumbes forests. The observed patterns of variation were contrasted against the diversity expected under a completely random null model of community assembly. Only the diversity of leaf sizes followed the hypothesis decreasing in as trait variation abiotic stress increased, while the other functional traits multivariate functional diversity and phylogenetic diversity no showed significant variation along the environmental gradient. The third theme assess whether the processes that organize the functional structure of the community operate at different spatial scales. To do this I mapped all the trees and shrubs of more than 5 cm in diameter within a plot of 9 hectares of dry forest and functionally classified each species. The plot was divided into subplots of different sizes, obtaining subplots of six different spatial scales. I found aggregation of similar functional strategies at small scales, which may indicate the existence of environmental filters or competitive processes that correspond to the optimal strategy for these fine scales. Finally, with the same information from the permanent plot of 9 ha, I evaluated the effect and behavior of individual species on the organization of the taxonomic, functional and phylogenetic diversity. The analysis comprised three spatial summary functions: ISAR- for taxonomic level analysis, IFDAR for functional level analysis, and IPSVAR for phylogenetic level analysis, in each case the pattern of diversity was contrasted against null models that randomly reallocate describe the spatial distribution of individual species and their traits. For all spatial scales considering ISAR, IFDAR and IPSVAR, most species behaved as neutral, i.e. they are surrounded by the diversity of other traits similar to that expected under a null model. However, some species appeared as accumulator of functional and phylogenetic diversity, suggesting that they may play a role in competitive processes that limiting similarity. A small proportion of the species appeared as repellent of functional and phylogenetic diversity, suggesting their involvement in a process of habitat filtering. These analysis highlights that the analysis of alternative dimensions of biodiversity, such as functional and phylogenetic diversity, can help us understand the co-occurrence of species in the assembly of biotic communities. All results of this study provide further evidence of the processes of assembly of the community of the seasonally dry forests as environmental variables and competition play an important role in structuring the community.
Resumo:
From early in the AIDS epidemic, psychosocial stressors have been proposed as contributors to the variation in disease course. To test this hypothesis, rhesus macaques were assigned to stable or unstable social conditions and were inoculated with the simian immunodeficiency virus. Animals in the unstable condition displayed more agonism and less affiliation, shorter survival, and lower basal concentrations of plasma cortisol compared with stable animals. Early after inoculation, but before the emergence of group differences in cortisol levels, animals receiving social threats had higher concentrations of simian immunodeficiency virus RNA in plasma, and those engaging in affiliation had lower concentrations. The results indicate that social factors can have a significant impact on the course of immunodeficiency disease. Socially induced changes in pituitary–adrenal hormones may be one mechanism mediating this relationship.
Resumo:
Leukocyte migration from a hemopoietic pool across marrow endothelium requires active pseudopod formation and adhesion. Leukocytes rarely show pseudopod formation while in circulation. At question then is the mechanism that serves to minimize leukocyte pseudopod formation in the circulation. We tested the hypothesis that fluid shear stress acts to prevent pseudopod formation. When individual human leukocytes (neutrophils, monocytes) spreading on glass surfaces in vitro were subjected to fluid shear stress (≈1 dyn/cm2), an instantaneous retraction of pseudopods was observed. Removal of the fluid shear stress in turn led to the return of pseudopod projection and cell spreading. When steady shear stress was prolonged over several minutes, leukocyte swelling occurs together with an enhanced random motion of cytoplasmic granules and a reduction of cytoplasmic stiffness. The response to shear stress could be suppressed by K+ channel blockers and chelation of external Ca2+. In rat mesentery microvessels after occlusion, circulating leukocytes project pseudopods in free suspension or when attached to the endothelium, even though immediately after occlusion only few pseudopods were present. When flow was restored, pseudopods on adhering leukocytes were retracted and then the cells began to roll and detach from the endothelium. In conclusion, plasma shear stress in the circulation serves to reduce pseudopod projection and adhesion of circulating leukocytes and vice versa reduction of shear stress leads to pseudopod projection and spreading of leukocytes on the endothelium.
Resumo:
Stress fibers were isolated from cultured human foreskin fibroblasts and bovine endothelial cells, and their contraction was demonstrated in vitro. Cells in culture dishes were first treated with a low-ionic-strength extraction solution and then further extracted using detergents. With gentle washes by pipetting, the nucleus and the apical part of cells were removed. The material on the culture dish was scraped, and the freed material was forced through a hypodermic needle and fractionated by sucrose gradient centrifugation. Isolated, free-floating stress fibers stained brightly with fluorescently labeled phalloidin. When stained with anti-α-actinin or anti-myosin, isolated stress fibers showed banded staining patterns. By electron microscopy, they consisted of bundles of microfilaments, and electron-dense areas were associated with them in a semiperiodic manner. By negative staining, isolated stress fibers often exhibited gentle twisting of microfilament bundles. Focal adhesion–associated proteins were also detected in the isolated stress fiber by both immunocytochemical and biochemical means. In the presence of Mg-ATP, isolated stress fibers shortened, on the average, to 23% of the initial length. The maximum velocity of shortening was several micrometers per second. Polystyrene beads on shortening isolated stress fibers rotated, indicating spiral contraction of stress fibers. Myosin regulatory light chain phosphorylation was detected in contracting stress fibers, and a myosin light chain kinase inhibitor, KT5926, inhibited isolated stress fiber contraction. Our study demonstrates that stress fibers can be isolated with no apparent loss of morphological features and that they are truly contractile organelle.
Resumo:
Most higher plants develop severe toxicity symptoms when grown on ammonium (NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}) as the sole nitrogen source. Recently, NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} toxicity has been implicated as a cause of forest decline and even species extinction. Although mechanisms underlying NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} toxicity have been extensively sought, the primary events conferring it at the cellular level are not understood. Using a high-precision positron tracing technique, we here present a cell-physiological characterization of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} acquisition in two major cereals, barley (Hordeum vulgare), known to be susceptible to toxicity, and rice (Oryza sativa), known for its exceptional tolerance to even high levels of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}. We show that, at high external NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} concentration ([NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}]o), barley root cells experience a breakdown in the regulation of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} influx, leading to the accumulation of excessive amounts of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} in the cytosol. Measurements of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} efflux, combined with a thermodynamic analysis of the transmembrane electrochemical potential for NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}, reveal that, at elevated [NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}]o, barley cells engage a high-capacity NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}-efflux system that supports outward NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} fluxes against a sizable gradient. Ammonium efflux is shown to constitute as much as 80% of primary influx, resulting in a never-before-documented futile cycling of nitrogen across the plasma membrane of root cells. This futile cycling carries a high energetic cost (we record a 40% increase in root respiration) that is independent of N metabolism and is accompanied by a decline in growth. In rice, by contrast, a cellular defense strategy has evolved that is characterized by an energetically neutral, near-Nernstian, equilibration of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} at high [NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document}]o. Thus our study has characterized the primary events in NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} nutrition at the cellular level that may constitute the fundamental cause of NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{4}^{+}}}\end{equation*}\end{document} toxicity in plants.
Resumo:
Atherosclerosis preferentially occurs in areas of turbulent flow and low fluid shear stress, whereas laminar flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and IL-1 stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. TNF-α and IL-1 regulate gene expression in ECs, in part, by stimulating mitogen-activated protein kinases (MAPK), which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAPK in EC. To test this hypothesis, we determined the effects of flow (shear stress = 12 dynes/cm2) on TNF-α and IL-1-stimulated activity of three MAPK in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK). Flow alone stimulated ERK1/2 and p38 activity but decreased JNK activity compared with static controls. TNF-α or IL-1 alone activated ERK1/2, p38, and JNK maximally at 15 min in HUVEC. Preexposing HUVEC for 10 min to flow inhibited TNF-α and IL-1 activation of JNK by 46% and 49%, respectively, but had no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, which inhibits flow-mediated ERK1/2 activation, prevented flow from inhibiting cytokine activation of JNK. Phorbol 12-myristate 13-acetate, which strongly activates ERK1/2, also inhibited TNF-α activation of JNK. These findings indicate that fluid shear stress inhibits TNF-α-mediated signaling events in HUVEC via the activation of the ERK1/2 signaling pathway. Inhibition of TNF-α signal transduction represents a mechanism by which steady laminar flow may exert atheroprotective effects on the endothelium.
Resumo:
A strain of Synechococcus sp. strain PCC 7942 with no functional Fe superoxide dismutase (SOD), designated sodB−, was characterized by its growth rate, photosynthetic pigments, and cyclic photosynthetic electron transport activity when treated with methyl viologen or norflurazon (NF). In their unstressed conditions, both the sodB− and wild-type strains had similar chlorophyll and carotenoid contents and catalase activity, but the wild type had a faster growth rate and higher cyclic electron transport activity. The sodB− was very sensitive to methyl viologen, indicating a specific role for the FeSOD in protection against superoxide generated in the cytosol. In contrast, the sodB− mutant was less sensitive than the wild type to oxidative stress imposed with NF. This suggests that the FeSOD does not protect the cell from excited singlet-state oxygen generated within the thylakoid membrane. Another up-regulated antioxidant, possibly the MnSOD, may confer protection against NF in the sodB− strain. These results support the hypothesis that different SODs have specific protective functions within the cell.
Resumo:
Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al.
Resumo:
Heat shock protein gp96 primes class I restricted cytotoxic T cells against antigens present in the cells from which it was isolated. Moreover, gp96 derived from certain tumors functions as an effective vaccine, causing complete tumor regressions in in vivo tumor challenge protocols. Because tumor-derived gp96 did not differ from gp96 isolated from normal tissues, a role for gp96 as a peptide carrier has been proposed. To test this hypothesis, we analyzed whether such an association of antigenic peptides with gp96 occurs in a well-defined viral model system. Here we present the full characterization of an antigenic peptide that endogenously associates with the stress protein gp96 in cells infected with vesicular stomatitis virus (VSV). This peptide is identical to the immunodominant peptide of VSV, which is also naturally presented by H-2Kb major histocompatibility complex class I molecules. This peptide associates with gp96 in VSV-infected cells regardless of the major histocompatibility com- plex haplotype of the cell. Our observations provide a biochemical basis for the vaccine function of gp96.
Resumo:
The mechanisms by which stress and anti-depressants exert opposite effects on the course of clinical depression are not known. However, potential candidates might include neurotrophic factors that regulate the development, plasticity, and survival of neurons. To explore this hypothesis, we examined the effects of stress and antidepressants on neurotrophin expression in the locus coeruleus (LC), which modulates many of the behavioral and physiological responses to stress and has been implicated in mood disorders. Using in situ hybridization, we demonstrate that neurotrophin 3 (NT-3) is expressed in noradrenergic neurons of the LC. Recurrent, but not acute, immobilization stress increased NT-3 mRNA levels in the LC. In contrast, chronic treatment with antidepressants decreased NT-3 mRNA levels. The effect occurred in response to antidepressants that blocked norepinephrine uptake, whereas serotonin-specific reuptake inhibitors did not alter NT-3 levels. Electroconvulsive seizures also decreased NT-3 expression in the LC as well as the hippocampus. Ntrk3 (neurotrophic tyrosine kinase receptor type 3; formerly TrkC), the receptor for NT-3, is expressed in the LC, but its mRNA levels did not change with stress or antidepressant treatments. Because, NT-3 is known to be trophic for LC neurons, our results raise the possibility that some of the effects of stress and antidepressants on LC function and plasticity could be mediated through NT-3. Moreover, the coexpression of NT-3 and its receptor in the LC suggests the potential for autocrine mechanisms of action.
Resumo:
Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprogramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This paper presents an analysis of the thermomechanical behavior of hollow circular cylinders of functionally graded material (FGM). The solutions are obtained by a novel limiting process that employs the solutions of homogeneous hollow circular cylinders, with no recourse to the basic theory or the equations of non-homogeneous thermoclasticity. Several numerical cases are studied, and conclusions are drawn regarding the general properties of thermal stresses in the FGM cylinder. We conclude that thermal stresses necessarily occur in the FGM cylinder, except in the trivial case of zero temperature. While heat resistance may be improved by sagaciously designing the material composition, careful attention must be paid to the fact that thermal stresses in the FGM cylinder are governed by more factors than are its homogeneous counterparts. The results that are presented here will serve as benchmarks for future related work. (C) 2003 Elsevier Science Ltd. All rights reserved.