171 resultados para STRAINED PBTE
Resumo:
This book argues that disenchantment is not only a response to wartime experience, but a condition of modernity with a language that finds extreme expression in First World War literature. The objects of disenchantment are often the very same as the enchantments of scientific progress: bureaucracy, homogenisation and capitalism. Older beliefs such as religion, courage and honour are kept in view, and endure longer than often is realised. Social critics, theorists and commentators of the late nineteenth and early twentieth centuries provide a rich and previously unexplored context for wartime and post-war literature. The rise of the disenchanted narrative to its predominance in the War Books Boom of 1928 – 1930 is charted from the turn of the century in texts, archival material, sales and review data. Rarely-studied popular and middlebrow novels are analysed alongside well-known highbrow texts: D. H. Lawrence, Virginia Woolf, H. G. Wells and Rebecca West rub shoulders with forgotten figures such as Gilbert Frankau and Ernest Raymond. These sometimes jarring juxtapositions show the strained relationship between enchantment and disenchantment in the war and the post-war decade.
Resumo:
“Parallel Ruptures: Jews of Bessarabia and Transnistria between Romanian Nationalism and Soviet Communism, 1918-1940,” explores the political and social debates that took place in Jewish communities in Romanian-held Bessarabia and the Moldovan Autonomous Soviet Socialist Republic during the interwar era. Both had been part of the Russian Pale of Settlement until its dissolution in 1917; they were then divided by the Romanian Army’s occupation of Bessarabia in 1918 with the establishment of a well-guarded border along the Dniester River between two newly-formed states, Greater Romania and the Soviet Union. At its core, the project focuses in comparative context on the traumatic and multi-faceted confrontation with these two modernizing states: exclusion, discrimination and growing violence in Bessarabia; destruction of religious tradition, agricultural resettlement, and socialist re-education and assimilation in Soviet Transnistria. It examines also the similarities in both states’ striving to create model subjects usable by the homeland, as well as commonalities within Jewish responses on both sides of the border. Contacts between Jews on either side of the border remained significant after 1918 despite the efforts of both states to curb them, thereby necessitating a transnational view in order to examine Jewish political and social life in borderland regions. The desire among Jewish secular leaders to mold their co-religionists into modern Jews reached across state borders and ideological divides and sought to manipulate respective governments to establish these goals, however unsuccessful in the final analysis. Finally, strained relations between Jews in peripheral borderlands with those at national/imperial cores, Moscow and Bucharest, sheds light on the complex circumstances surrounding the inclusion versus exclusion debates at the heart of all interwar European states and the complicated negotiations that took place within all minority communities that responded to state policies.
Resumo:
A really particular and innovative metal-polymer sandwich material is Hybrix. Hybrix is a product developed and manufactured by Lamera AB, Gothenburg, Sweden. This innovative hybrid material is composed by two relatively thin metal layers if compared to the core thickness. The most used metals are aluminum and stainless steel and are separated by a core of nylon fibres oriented perpendicularly to the metal plates. The core is then completed by adhesive layers applied at the PA66-metal interface that once cured maintain the nylon fibres in position. This special material is very light and formable. Moreover Hybrix, depending on the specific metal which is used, can achieve a good corrosion resistance and it can be cut and punched easily. Hybrix architecture itself provides extremely good bending stiffness, damping properties, insulation capability, etc., which again, of course, change in magnitude depending in the metal alloy which is used, its thickness and core thickness. For these reasons nowadays it shows potential for all the applications which have the above mentioned characteristic as a requirement. Finally Hybrix can be processed with tools used in regular metal sheet industry and can be handled as solid metal sheets. In this master thesis project, pre-formed parts of Hybrix were studied and characterized. Previous work on Hybrix was focused on analyze its market potential and different adhesive to be used in the core. All the tests were carried out on flat unformed specimens. However, in order to have a complete description of this material also the effect of the forming process must be taken into account. Thus the main activities of the present master thesis are the following: Dynamic Mechanical-Thermal Analysis (DMTA) on unformed Hybrix samples of different thickness and on pre-strained Hybrix samples, pure epoxy adhesive samples analysis and finally moisture effects evaluation on Hybrix composite structure.
Resumo:
The relations between China and Japan are strained and continue to foster negative emotions partly because of China’s grievances about Japan’s actions during World War II and the allegedly false historiographical accounts found in Japanese history textbooks. This study will utilize historical analysis of the events leading up to the Nanjing Massacre in December of 1937, examine the Japanese Ministry of Education’s (MEXT) critical and contentious role in the selection of textbooks, used for primary and secondary schools, and will also juxtapose the controversial 2001 Atarashii rekishi kyōkasho with current Japanese history textbooks. The study will also include a syntactical analysis of key terms through my own original translations of multiple Japanese history textbooks, which are currently used in the Japanese school curriculum, to reveal that the textbook publishers, MEXT, and regulation councils are involved in adjusting the content causing the information to reveal various degrees of whitewashing.
Resumo:
Because of global warming the energy production development has progressed towards more renewable energy sources. Biomass has great potential in this matter and pellet is already a big market that has increased seven times the past decade. A periodically strained woodchip resource market and statements of short supply in the future has got actors exploring opportunities with other commodities. Grasses such as Canary grass has shown great potential in this matter and in this study a wetland grass is tested as an additive, 0,5, 1,0, 1,5, and 1,9%, with spruce woodchips. The test production series was performed at a production unit located at the department of environmental and energy system at Karlstad University, Karlstad. Quality was controlled accordingly to the European standard and parameters such as energy consumption, moisture content, mechanical durability and bulk density was tested. For comparison, a sample with only spruce wood chips was produced, and a sample containing 1% of a commonly used additive, potato starch. The results showed that a decrease in energy consumption with 14% when 2% wetland grass was added, part of the decline may be due to the increased production flow compared with the reference sample. The positive effects on decrease in energy consumption, that 1% potato starch results in, is equal to reults from 1% wetlandgrass. This indicates lubricating properties in wetlandgrass. This is attributed to that herbaceous plants have a high content of extracts such as waxes and that they cause less friction in the press. Tests also showed that pellet with wetland grass did not qualify the European standard in terms of mechanical durability. Extracts can form a weak boundary layer in the pellet and cause this. A possible trend shows a better mechanical durability with more grass in pellets. The presence of different size of particles can be a reason. Moisture content qualifies according to the European standard but is below optimum 8%. This despite to relatively high moisture content in the mixer. Higher moisture content in the press would certainly result in a generally higher quality. Suggestions for future studies are to produce pellets with greater distribution on the wetland grass added, to easier interpret a connection. Also examine the extracts behavior with different moisture content. For a sustainable development accordingly renewable energy it is important to ensure the future commodity market for pellets. Further studies should be performed to help the development of alternative raw materials in conjunction with pellet production.
Resumo:
Due to their intriguing dielectric, pyroelectric, elasto-electric, or opto-electric properties, oxide ferroelectrics are vital candidates for the fabrication of most electronics. However, these extraordinary properties exist mainly in the temperature regime around the ferroelectric phase transition, which is usually several hundreds of K away from room temperature. Therefore, the manipulation of oxide ferroelectrics, especially moving the ferroelectric transition towards room temperature, is of great interest for application and also basic research. In this thesis, we demonstrate this using examples of NaNbO3 films. We show that the transition temperature of these films can be modified via plastic strain caused by epitaxial film growth on a structurally mismatched substrate, and this strain can be fixed by controlling the stoichiometry. The structural and electronic properties of Na1+xNbO3+δ thin films are carefully examined by among others XRD (e.g. RSM) and TEM and cryoelectronic measurements. Especially the electronic features are carefully analyzed via specially developed interdigitated electrodes in combination with integrated temperature sensor and heater. The electronic data are interpreted using existing as well as novel theories and models, they are proved to be closely correlated to the structural characteristics. The major results are: -Na1+xNbO3+δ thin films can be grown epitaxially on (110)NdGaO3 with a thickness up to 140 nm (thicker films have not been studied). Plastic relaxation of the compressive strain sets in when the thickness of the film exceeds approximately 10 – 15 nm. Films with excess Na are mainly composed of NaNbO3 with minor contribution of Na3NbO4. The latter phase seems to form nanoprecipitates that are homogeneously distributed in the NaNbO3 film which helps to stabilize the film and reduce the relaxation of the strain. -For the nominally stoichiometric films, the compressive strain leads to a broad and frequency-dispersive phase transition at lower temperature (125 – 147 K). This could be either a new transition or a shift in temperature of a known transition. Considering the broadness and frequency dispersion of the transition, this is actually a transition from the dielectric state at high temperature to a relaxor-type ferroelectric state at low temperature. The latter is based on the formation of polar nano-regions (PNRs). Using the electric field dependence of the freezing temperature, allows a direct estimation of the volume (70 to 270 nm3) and diameter (5.2 to 8 nm, spherical approximation) of the PNRs. The values confirm with literature values which were measured by other technologies. -In case of the off-stoichiometric samples, we observe again the classical ferroelectric behavior. However, the thermally hysteretic phase transition which is observed around 620 – 660 K for unstrained material is shifted to room temperature due to the compressive strain. Beside to the temperature shift, the temperature dependence of the permittivity is nearly identical for strained and unstrained materials. -The last but not least, in all cases, a significant anisotropy in the electronic and structural properties is observed which arises automatically from the anisotropic strain caused by the orthorhombic structure of the substrate. However, this anisotropy cannot be explained by the classical model which tries to fit an orthorhombic film onto an orthorhombic substrate. A novel “square lattice” model in which the films adapt a “square” shaped lattice in the plane of the film during the epitaxial growth at elevated temperature (~1000 K) nicely explains the experimental results. In this thesis we sketch a way to manipulate the ferroelectricity of NaNbO3 films via strain and stoichiometry. The results indicate that compressive strain which is generated by the epitaxial growth of the film on mismatched substrate is able to reduce the ferroelectric transition temperature or induce a phase transition at low temperature. Moreover, by adding Na in the NaNbO3 film a secondary phase Na3NbO4 is formed which seems to stabilize the main phase NaNbO3 and the strain and, thus, is able to engineer the ferroelectric behavior from the expected classical ferroelectric for perfect stoichiometry to relaxor-type ferroelectric for slightly off-stoichiometry, back to classical ferroelectric for larger off-stoichiometry. Both strain and stoichiometry are proven as perfect methods to optimize the ferroelectric properties of oxide films.