957 resultados para STM - Scanning Tunneling Microscope


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of atomically precise armchair graphene nanoribbons of width N=7 (7-AGNRs) are investigated by scanning tunneling spectroscopy (STS) on Au(111). We record the standing waves in the local density of states of finite ribbons as a function of sample bias and extract the dispersion relation of frontier electronic states by Fourier transformation. The wave-vector-dependent contributions from these states agree with density functional theory calculations, thus enabling the unambiguous assignment of the states to the valence band, the conduction band, and the next empty band with effective masses of 0.41±0.08me,0.40±0.18me, and 0.20±0.03me, respectively. By comparing the extracted dispersion relation for the conduction band to corresponding height-dependent tunneling spectra, we find that the conduction band edge can be resolved only at small tip-sample separations and has not been observed before. As a result, we report a band gap of 2.37±0.06 eV for 7-AGNRs adsorbed on Au(111).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used electrochemical scanning tunneling microscopy to study the intercalation of hydrogen into a Cu(111) model electrode under reactive (in operando) conditions. Hydrogen evolution causes hydrogen intermediates to migrate into the copper lattice as function of the applied potential and the resulting current density. This H-inclusion is demonstrated to be reversible. The presence of subsurface hydrogen leads to a significant surface relaxation/reconstruction affecting both the geometric and electronic structure of the electrode surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Miocene to early Pliocene carbonate-rich sediments recovered at Integrated Ocean Drilling Program (IODP) Site U1338 during the Expedition 320/321 Pacific Equatorial Age Transect (PEAT) program contain abundant calcareous nanno- and microfossils. Geochemical proxies from benthic and planktonic foraminiferal and coccolithophore calcite could be very useful at this location; however, good preservation of the calcite is crucial for the proxies to be robust. Here, we evaluate the preservation of specific benthic and planktonic foraminifer species and coccolithophores in fine fraction sediment at Site U1338 using backscattered electron (topography mode) scanning electron microscopy (BSE-TOPO SEM). Both investigated foraminiferal species, Cibicidoides mundulus and Globigerinoides sacculifer, have undergone some alteration. The C. mundulus show minor evidence for dissolution, and only some specimens show evidence of overgrowth. The Gs. sacculifer show definite signs of alteration and exhibit variable preservation, ranging from fair to poor; some specimens show minor overgrowth and internal recrystallization but retain original features such as pores, spine pits, and internal test-wall growth structure, whereas in other specimens the recrystallization and overgrowth disguise many of the original features. Secondary electron and BSE-TOPO SEM images show that coccolith calcite preservation is moderate or moderate to poor. Slight to moderate etching has removed central heterococcolith features, and a small amount of secondary overgrowth is also visible. Energy dispersive spectroscopy analyses indicate that the main sedimentary components of the fine fraction sediment are biogenic CaCO3 and SiO2, with some marine barite. Based on the investigations in this data report, geochemical analyses on benthic foraminifers are unlikely to be affected by preservation, although geochemical analyses on the planktonic foraminifers should be treated cautiously because of the fair to poor and highly variable preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conductance of atomic-sized metallic point contacts is shown to be strongly voltage dependent due to quantum interference with impurities even in samples with low impurity concentrations. Transmission through these small contacts depends not only on the local atomic structure at the contact but also on the distribution of impurities or defects within a coherence length of the contact. In contrast with other mesoscopic systems we show that transport through atomic contacts is coherent even at room temperature. The use of a scanning tunneling microscope (STM) makes it possible to fabricate one atom contacts of gold whose transmission can be controlled by manipulation of the contact allowing inelastic spectroscopy in such small contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic transport at finite voltages in free-standing gold atomic chains of up to seven atoms in length is studied at low temperatures using a scanning tunneling microscope. The conductance vs voltage curves show that transport in these single-mode ballistic atomic wires is nondissipative up to a finite voltage threshold of the order of several mV. The onset of dissipation and resistance within the wire corresponds to the excitation of the atomic vibrations by the electrons traversing the wire and is very sensitive to strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scanning tunneling microscope can probe the inelastic spin excitations of a single magnetic atom in a surface via spin-flip assisted tunneling in which transport electrons exchange spin and energy with the atomic spin. If the inelastic transport time, defined as the average time elapsed between two inelastic spin flip events, is shorter than the atom spin-relaxation time, the scanning tunnel microscope (STM) current can drive the spin out of equilibrium. Here we model this process using rate equations and a model Hamiltonian that describes successfully spin-flip-assisted tunneling experiments, including a single Mn atom, a Mn dimer, and Fe Phthalocyanine molecules. When the STM current is not spin polarized, the nonequilibrium spin dynamics of the magnetic atom results in nonmonotonic dI/dV curves. In the case of spin-polarized STM current, the spin orientation of the magnetic atom can be controlled parallel or antiparallel to the magnetic moment of the tip. Thus, spin-polarized STM tips can be used both to probe and to control the magnetic moment of a single atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital magnetic recording is based on the storage of a bit of information in the orientation of a magnetic system with two stable ground states. Here we address two fundamental problems that arise when this is done on a quantized spin: quantum spin tunneling and backaction of the readout process. We show that fundamental differences exist between integer and semi-integer spins when it comes to both reading and recording classical information in a quantized spin. Our findings imply fundamental limits to the miniaturization of magnetic bits and are relevant to recent experiments where a spin-polarized scanning tunneling microscope reads and records a classical bit in the spin orientation of a single magnetic atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scanning tunneling microscope can probe the inelastic spin excitations of single magnetic atoms in a surface via spin-flip assisted tunneling. A particular and intriguing case is the Mn dimer case. We show here that the existing theories for inelastic transport spectroscopy do not explain the observed spin transitions when both atoms are equally coupled to the scanning tunneling microscope tip and the substrate, the most likely experimental situation. The hyperfine coupling to the nuclear spins is shown to lead to a finite excitation amplitude, but the physical mechanism leading to the large inelastic signal observed is still unknown. We discuss some other alternatives that break the symmetry of the system and allow for larger excitation probabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic gap structure of the organic molecule N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine, also known as TPD, has been studied by means of a Scanning Tunneling Microscope (STM) and by Photoluminescence (PL) analysis. Hundreds of current-voltage characteristics measured at different spots of the sample show the typical behavior of a semiconductor. The analysis of the curves allows to construct a gap distribution histogram which reassembles the PL spectrum of this compound. This analysis demonstrates that STM can give relevant information, not only related to the expected value of a semiconductor gap but also on its distribution which affects its physical properties such as its PL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moisture transport and dimensional change during wood drying or wetting processes were analyzed based on pictures from an environmental scanning electron microscope (ESEM). This provides quantitative relationships between dimensional changes of total area, cell wall, and lumen, and moisture content for earlywood and latewood. Earlywood and latewood behave similarly but show some quantitative differences. The overall outcome for sections containing both kinds of wood seems to be dominated by the latewood behavior. The observed strain behavior of wood during drying is anisotropic in ways that are inconsistent with explanations solely related to microfibril orientation or earlywood/latewood interactions and more likely may be influenced by ray tracheids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors that influence this. However, there are a few methods that study these systems in their natural hydrated state; commonly, the liposomes are visualized after drying, staining and/or fixation of the vesicles. Environmental scanning electron microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. We were the first to use ESEM to study the liposomes and niosomes, and have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses onto, or evaporates from, the sample in real-time. This provides an insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay for liposome formulation and stability.