990 resultados para STARS: POPULATION III
Resumo:
Plasmodium falciparum, the agent of malignant malaria, is one of mankind’s most severe scourges. Efforts to develop preventive vaccines or remedial drugs are handicapped by the parasite’s rapid evolution of drug resistance and protective antigens. We examine 25 DNA sequences of the gene coding for the highly polymorphic antigenic circumsporozoite protein. We observe total absence of silent nucleotide variation in the two nonrepeated regions of the gene. We propose that this absence reflects a recent origin (within several thousand years) of the world populations of P. falciparum from a single individual; the amino acid polymorphisms observed in these nonrepeat regions would result from strong natural selection. Analysis of these polymorphisms indicates that: (i) the incidence of recombination events does not increase with nucleotide distance; (ii) the strength of linkage disequilibrium between nucleotides is also independent of distance; and (iii) haplotypes in the two nonrepeat regions are correlated with one another, but not with the central repeat region they span. We propose two hypotheses: (i) variation in the highly polymorphic central repeat region arises by mitotic intragenic recombination, and (ii) the population structure of P. falciparum is clonal—a state of affairs that persists in spite of the necessary stage of physiological sexuality that the parasite must sustain in the mosquito vector to complete its life cycle.
Resumo:
Observers have found a small number of lithium-depleted halo stars in the temperature range of the Spite plateau. The current status of the mass-loss hypothesis for producing the observed lithium dip in Population (Pop) I stars is briefly discussed and extended to Pop II stars as a possible explanation for these halo objects. Based on detections of F-type main-sequence variables, mass loss is assumed to occur in a narrow temperature region corresponding to this “instability strip.” As Pop II main-sequence stars evolve to the blue, they enter this narrow temperature region, then move back through the lower temperature area of the Spite plateau. If 0.05 M⊙ (solar mass) or more have been lost, they will show lithium depletion. This hypothesis affects the lithium-to- beryllium abundance, the ratio of high- to low-lithium stars, and the luminosity function. Constraints on the mass-loss hypothesis due to these effects are discussed. Finally, mass loss in this temperature range would operate in stars near the turnoff of metal-poor globular clusters, resulting in apparent ages 2 to 3 Gyr (gigayears) older than they actually are.
Resumo:
Pseudogenes are non-functioning copies of genes in genomic DNA, which may either result from reverse transcription from an mRNA transcript (processed pseudogenes) or from gene duplication and subsequent disablement (non-processed pseudogenes). As pseudogenes are apparently ‘dead’, they usually have a variety of obvious disablements (e.g., insertions, deletions, frameshifts and truncations) relative to their functioning homologs. We have derived an initial estimate of the size, distribution and characteristics of the pseudogene population in the Caenorhabditis elegans genome, performing a survey in ‘molecular archaeology’. Corresponding to the 18 576 annotated proteins in the worm (i.e., in Wormpep18), we have found an estimated total of 2168 pseudogenes, about one for every eight genes. Few of these appear to be processed. Details of our pseudogene assignments are available from http://bioinfo.mbb.yale.edu/genome/worm/pseudogene. The population of pseudogenes differs significantly from that of genes in a number of respects: (i) pseudogenes are distributed unevenly across the genome relative to genes, with a disproportionate number on chromosome IV; (ii) the density of pseudogenes is higher on the arms of the chromosomes; (iii) the amino acid composition of pseudogenes is midway between that of genes and (translations of) random intergenic DNA, with enrichment of Phe, Ile, Leu and Lys, and depletion of Asp, Ala, Glu and Gly relative to the worm proteome; and (iv) the most common protein folds and families differ somewhat between genes and pseudogenes—whereas the most common fold found in the worm proteome is the immunoglobulin fold and the most common ‘pseudofold’ is the C-type lectin. In addition, the size of a gene family bears little overall relationship to the size of its corresponding pseudogene complement, indicating a highly dynamic genome. There are in fact a number of families associated with large populations of pseudogenes. For example, one family of seven-transmembrane receptors (represented by gene B0334.7) has one pseudogene for every four genes, and another uncharacterized family (represented by gene B0403.1) is approximately two-thirds pseudogenic. Furthermore, over a hundred apparent pseudogenic fragments do not have any obvious homologs in the worm.
Resumo:
The genetic variability at six polymorphic loci was examined within a global collection of 502 isolates of subgroup III, serogroup A Neisseria meningitidis. Nine “genoclouds” were identified, consisting of genotypes that were isolated repeatedly plus 48 descendent genotypes that were isolated rarely. These genoclouds have caused three pandemic waves of disease since the mid-1960s, the most recent of which was imported from East Asia to Europe and Africa in the mid-1990s. Many of the genotypes are escape variants, resulting from positive selection that we attribute to herd immunity. Despite positive selection, most escape variants are less fit than their parents and are lost because of competition and bottlenecks during spread from country to country. Competition between fit genotypes results in dramatic changes in population composition over short time periods.
Resumo:
The purpose of this study was to analyze the internal consistency and the external and structure validity of the 12-Item General Health Questionnaire (GHQ-12) in the Spanish general population. A stratified sample of 1001 subjects, ages between 25 and 65 years, taken from the general Spanish population was employed. The GHQ-12 and the Inventory of Situations and Responses of Anxiety-ISRA were administered. A Cronbach’s alpha of .76 (Standardized Alpha: .78) and a 3-factor structure (with oblique rotation and maximum likelihood procedure) were obtained. External validity of Factor I (Successful Coping) with the ISRA is very robust (.82; Factor II, .70; Factor III, .75). The GHQ-12 shows adequate reliability and validity in the Spanish population. Therefore, the GHQ-12 can be used with efficacy to assess people’s overall psychological well-being and to detect non-psychotic psychiatric problems. Additionally, our results confirm that the GHQ-12 can best be thought of as a multidimensional scale that assesses several distinct aspects of distress, rather than just a unitary screening measure.
Resumo:
Context. Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years, this was attributed to a central mass-accreting supermassive black hole (more commonly known as active galactic nucleus, AGN) of low luminosity, making LINER galaxies the largest AGN sub-population, which dominate in numbers over higher luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Aims. Using integral field spectroscopic data from the CALIFA survey, we compare the observed radial surface brightness profiles with what is expected from illumination by an AGN. Methods. Essential for this analysis is a proper extraction of emission lines, especially weak lines, such as Balmer H beta lines, which are superposed on an absorption trough. To accomplish this, we use the GANDALF code, which simultaneously fits the underlying stellar continuum and emission lines. Results. For 48 galaxies with LINER-like emission, we show that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. Conclusions. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with the gas present and with stars older than ~1 Gyr unless a stronger radiation field from young hot stars or an AGN outshines them. This means that galaxies with LINER-like emission are not a class defined by a property but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.
Resumo:
We present a library of Penn State Fiber Optic Echelle (FOE) observations of a sample of field stars with spectral types F to M and luminosity classes V to I. The spectral coverage is from 3800 to 10000 Å with a nominal resolving power of 12,000. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity such as the Balmer lines (Hα to H epsilon), Ca II H & K, the Mg I b triplet, Na I D_1, D_2, He I D_3, and Ca II IRT lines. There are also a large number of photospheric lines, which can also be affected by chromospheric activity, and temperature-sensitive photospheric features such as TiO bands. The spectra have been compiled with the goal of providing a set of standards observed at medium resolution. We have extensively used such data for the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways ranging from radial velocity templates to study of variable stars and stellar population synthesis. This library can also be used for spectral classification purposes and determination of atmospheric parameters (T_eff, log g, [Fe/H]). A digital version of all the fully reduced spectra is available via ftp and the World Wide Web (WWW) in FITS format.
Resumo:
Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims. We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods. Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results. LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.
Resumo:
We study the relationship between age, metallicity, and α-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpcto 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages >9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more α-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
Resumo:
A large fraction of Gamma-ray bursts (GRBs) displays an X-ray plateau phase within <105 s from the prompt emission, proposed to be powered by the spin-down energy of a rapidly spinning newly born magnetar. In this work we use the properties of the Galactic neutron star population to constrain the GRB-magnetar scenario. We re-analyze the X-ray plateaus of all Swift GRBs with known redshift, between 2005 January and 2014 August. From the derived initial magnetic field distribution for the possible magnetars left behind by the GRBs, we study the evolution and properties of a simulated GRB-magnetar population using numerical simulations of magnetic field evolution, coupled with Monte Carlo simulations of Pulsar Population Synthesis in our Galaxy. We find that if the GRB X-ray plateaus are powered by the rotational energy of a newly formed magnetar, the current observational properties of the Galactic magnetar population are not compatible with being formed within the GRB scenario (regardless of the GRB type or rate at z = 0). Direct consequences would be that we should allow the existence of magnetars and "super-magnetars" having different progenitors, and that Type Ib/c SNe related to Long GRBs form systematically neutron stars with higher initial magnetic fields. We put an upper limit of ≤16 "super-magnetars" formed by a GRB in our Galaxy in the past Myr (at 99% c.l.). This limit is somewhat smaller than what is roughly expected from Long GRB rates, although the very large uncertainties do not allow us to draw strong conclusion in this respect.
Resumo:
Four population scenarios were derived that describe indicators of demographic behaviour for people living in different future political-economic contexts. This policy paper explores future trends in i) population growth at regional and national levels, ii) working age populations, in view of demographic dividend potential, and iii) elderly populations, in view of the financial burden they place on economies. Results show that different scenarios do not have large effects on population growth, at least up to 2030. This is due to the in-built ‘population momentum’ effect in the relatively young age-structures of most southern and eastern Mediterranean countries (SEMCs). In the short term, up to 2030, and depending on which economic-political scenario unfolds, SEMCs are expected to grow from 280 million people to a figure of between 362 and 349 million people. Thus, in a period of about 20 years SEMCs are expected to grow by between 69 and 83 million people. In the same period, EU27 populations will grow by 21 million; only from about 500 to 521 million people. Between 2030 and 2050, additional population growth is foreseen in SEMCs, between 48 and 62 million people, while EU27 populations are expected to grow by 4 million only. SEMCs vary widely regarding demographic transition profiles so that demographic dividend potentials also vary. Old-age dependency ratios – the share of elderly people in relation to the working age population – are still low compared to EU27 ratios, but will increase after 2035. Should SEMCs’ economies remain politically, economically and environmentally precarious in the coming decades, their relatively low dependency ratios may impose an even higher social and financial burden on economies than the EU countries’ high dependency ratios impose on their economies.
Resumo:
MTSD 49.
Resumo:
Contiene: T. I (XXIII, 424 p.) -- T. II (395 p.) -- T. III (392 p.)
Resumo:
Preface also published separately with title: Preface to the abstract of the population of Great Britain. M.DCCC.XXXI.