948 resultados para STAR POLYMERS
Resumo:
A series of new photo-crosslinkable main-chain liquid-crystalline polymers containing bis(benzylidene)cycloalkanone units have been studied. These units in the polymers function as mesogens as well as photoactive centres. Polyesters with three different bis(4-hydroxybenzylidene)cycloalkanones corresponding to three cycloalkanones, namely cyclopentanone, cyclohexanone and cycloheptanone, have been prepared. Three dicarboxylic acids with ether linkages, which were derived from oligoethylene oxides, namely triethylene glycol, tetraethylene glycol and pentaethylene glycol, have been used as spacers in these polymers. Polymerization was carried out by both solution and interfacial polycondensation; the latter method gave high-molecular-weight polymers. Structural characterizations were done by ultra-violet, infra-red and H-1 nuclear magnetic resonance spectroscopy. Liquid-crystalline properties were studied by differential scanning calorimetry and polarized-light optical microscopy. These polymers show a nematic mesophase. Liquid-crystalline transition temperatures were correlated with polymer structure. The decrease in transition temperature with increase in cycloalkanone ring size was explained in terms of the change in geometrical anisotropy of bis(benzylidene)cycloalkanone units. MNDO (modified neglect of differential overlap) calculations were performed on the model compounds, bis(4-acetyloxybenzylidene)cycloalkanone to elucidate the geometrical variation of the mesogenic units with cycloalkanone ring size. Studies of photolysis reveal the two kinds of photoreactions that proceed in these polymer systems, namely photoisomerization and photo-crosslinking. The former reaction disrupts the parallel stacking of the chromophores and is reflected as an increase in the ultra-violet spectral intensity. The favourability of these two reactions depends on the mobility of the polymer chains. When the photolysis was done below T-g, photo-crosslinking dominates over photoisomerization. Above T-g, photoisomerization is followed by photo-crosslinking. The photosensitivity of the polymers decreases with increase in size of the cycloalkanone ring.
Resumo:
Organic polymeric electro-optic (E-O) materials have attracted significant attention because of their potential use as fast and efficient components of integrated photonic devices (1,2). However, the practical application of these materials in optical devices is somewhat limited by the stringent material requirements imposed by the device design, fabrication processes and operating environments. Among the various material requirements, the most notable ones are large electro-optic coefficients (r(33)) and high thermal stability (3). The design of poled polymeric materials with high electro-optic activity (r(33)) involves the optimization of the percent incorporation of efficient (large beta mu) second order nonlinear optical (NLO) chromophores into the polymer matrices and the effective creation of poling-induced non-centrosymmetric structures. The factors that affect the material stability are a) the inherent thermal stability of the NLO chromophores, b) the chemical stability of the NLO chromophores during the polymer processing conditions, and c) the long-term dipolar alignment stability at high temperatures. Although considerable progress has been made in achieving these properties (4), organic polymeric materials suitable for practical E-O device applications are yet to be developed. This chapter highlights some of our approaches in the optimization of molecular and material nonlinear optical and thermal properties.
Resumo:
Four new neutral copper azido polymers, Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(8)(L-2)(2)](n) (2), Cu-4(N-3)(8)(L-3)(2)](n) (3), and Cu-9(N-3)(18)(L-4)(4)](n) (4) L1-4 are formed in situ by reacting pyridine-2-carboxaldehyde with 22-(methylamino)ethyl]pyridine (mapy, L-1), N,N-dimethylethylenediamine (N,N-dmen, L-2), N,N-diethylethylenediamine (N,N-deen, L-3), and N,N,2,2-tetramethylpropanediamine (N,N,2,2-tmpn, L-4)], have been synthesized by using 0.5 mol equiv of the chelating tridentate ligands with Cu-(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single-crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu-4(II) building blocks. The overall structure of 3 is two-dimensional, while the other three complexes are one-dimensional in nature. Complex 1 represents a unique example containing hemiaminal ether arrested by copper(R). Complexes 1 and 2 have a rare bridging azido pathway: both end-on and end-to-end bridging azides between a pair of Cu-II centers. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all four complexes. Density functional theory calculations (B3LYP functional) have been performed on complexes 1-3 to provide a qualitative theoretical interpretation of their overall ferromagnetic behavior.
Resumo:
The thermal degradation of poly(methyl methacrylate) (PMMA) in the presence of polysulfide polymers, namely, poly( styrene disulfide) (PSD) and poly(styrene tetrasulfide) (PST) was studied using thermogravimetry (TG) and direct pyrolysis-mass spectrometric (DP-MS) analysis. Both PSD and PST were found to stabilizethe PMMA degradation, which was explained by both radical recombination and a chain-transfer mechanism. (C) 1997 John Wiley & Sons, Inc.
Resumo:
This paper discusses the parallel implementation of the solution of a set of linear equations using the Alternative Quadrant Interlocking Factorisation Methods (AQIF), on a star topology. Both the AQIF and LU decomposition methods are mapped onto star topology on an IBM SP2 system, with MPI as the internode communicator. Performance parameters such as speedup, efficiency have been obtained through experimental and theoretical means. The studies demonstrate (i) a mismatch of 15% between the theoretical and experimental results, (ii) scalability of the AQIF algorithm, and (iii) faster executing AQIF algorithm.
Resumo:
A new class of biodegradable copolyesters was synthesized by the catalyst-free melt condensation of sorbitol with citric acid, tartaric acid, and sebacic acid. The resulting polymers were designated as poly(sorbitol citric sebacate) p(SCS)] and poly(sorbitol tartaric sebacate) p(STS)]. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, H-1-NMR spectroscopy, and differential scanning calorimetry analysis. Porous spongelike scaffolds were prepared with a salt-leaching technique and characterized with scanning electron microscopy. Tensile testing of the p(SCS) and p(STS) polymers showed that they exhibited a wide range of mechanical properties. The Young's modulus and tensile strengths of the polymers ranged from 1.06 +/- 0.12 to 462.65 +/- 34.21 MPa and from 0.45 +/- 0.04 to 20.32 +/- 2.54 MPa, respectively. In vitro degradation studies were performed on disc-shaped polymer samples. The half-life of the polymers ranged from 0.54 to 38.52 days. The percentage hydration of the polymers was in the range 9.36 +/- 1.26 to 78.25 +/- 1.91, with sol contents of 2-14%. At any given polymer composition, the Young's modulus and tensile strength of p(SCS) was higher than that of p(STS), whereas the degradation rates of p(SCS) was lower than that of p(STS). This was attributed to the structural difference between the citric and tartaric monomers and to the degree of crosslinking. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 2861-2869, 2011
Resumo:
Distribution of fluorescence resonance energy transfer (FRET) efficiency between the two ends of a Lennard-Jones polymer chain both at equilibrium and during folding and unfolding has been calculated, for the first time, by Brownian dynamics simulations. The distribution of FRET efficiency becomes bimodal during folding of the extended state subsequent to a temperature quench, with the width of the distribution for the extended state broader than that for the folded state. The reverse process of unfolding subsequent to a upward temperature jump shows different characteristics. The distributions show significant viscosity dependence which can be tested against experiments.
Resumo:
A method is described for estimating the incremental angle and angular velocity of a spacecraft using integrated rate parameters with the help of a star sensor alone. The chief advantage of this method is that the measured stars need not be identified, whereas the identification of the stars is necessary in earlier methods. This proposed estimation can be carried out with all of the available measurements by a simple linear Kalman filter, albeit with a time-varying sensitivity matrix. The residuals of estimated angular velocity by the proposed spacecraft incremental-angle and angular velocity estimation method are as accurate as the earlier methods. This method also enables the spacecraft attitude to be reconstructed for mapping the stars into an imaginary unit sphere in the body reference frame, which will preserve the true angular separation of the stars. This will pave the way for identification of the stars using any angular separation or triangle matching techniques applied to even a narrow field of view sensor that is made to sweep the sky. A numerical simulation for inertial as well as Earth pointing spacecraft is carried out to establish the results.
Resumo:
Diethyl allyl phosphate (DEAP) monomer has been synthesized, and characterized, using H-1 NMR and direct ionization mass spectrometric (DI-MS) techniques. It was free-radically polymerized to yield the poly(diethyl allyl phosphate) (PDEAP). The direct pyrolysis-mass spectrometric (DP-MS) analysis of the PDEAP revealed that it undergoes thermal degradation to yield mainly the monomer. Utility of PDEAP as a potent flame-retardant additive in polystyrene (PS) and poly(methyl methacrylate) (PMMA) has also been established.
Resumo:
Brownian dynamics (BD) simulations have been carried out to explore the effects of the orientational motion of the donor-acceptor (D-A) chromophore pair on the Forster energy transfer between the D-A pair embedded in a polymer chain in solution. It is found that the usually employed orientational averaging (that is, replacing the orientational factor, kappa, by kappa (2) = 2/3) may lead to an error in the estimation of the rate of the reaction by about 20%. In the limit of slow orientational relaxation, the preaveraging of the orientational factor leads to an overestimation of the rate, while in the opposite limit of very fast orientational relaxation, the usual scheme underestimates the rate. The latter results from an interesting interplay between reaction and diffusion. On the other hand, when one of the chromophores is fixed, the preaveraged rate is found to be fairly reliable if the rotational relaxation of the chromophore is sufficiently fast. The present study also reveals a power law dependence of the FRET rate on the chain length (rate proportional to N- alpha, with alpha approximate to 2.6).
Resumo:
We have imaged the H92alpha and H75alpha radio recombination line (RRL) emissions from the starburst galaxy NGC 253 with a resolution of similar to4 pc. The peak of the RRL emission at both frequencies coincides with the unresolved radio nucleus. Both lines observed toward the nucleus are extremely wide, with FWHMs of similar to200 km s(-1). Modeling the RRL and radio continuum data for the radio nucleus shows that the lines arise in gas whose density is similar to10(4) cm(-3) and mass is a few thousand M., which requires an ionizing flux of (6-20) x 10(51) photons s(-1). We consider a supernova remnant (SNR) expanding in a dense medium, a star cluster, and also an active galactic nucleus (AGN) as potential ionizing sources. Based on dynamical arguments, we rule out an SNR as a viable ionizing source. A star cluster model is considered, and the dynamics of the ionized gas in a stellar-wind driven structure are investigated. Such a model is only consistent with the properties of the ionized gas for a cluster younger than similar to10(5) yr. The existence of such a young cluster at the nucleus seems improbable. The third model assumes the ionizing source to be an AGN at the nucleus. In this model, it is shown that the observed X-ray flux is too weak to account for the required ionizing photon flux. However, the ionization requirement can be explained if the accretion disk is assumed to have a big blue bump in its spectrum. Hence, we favor an AGN at the nucleus as the source responsible for ionizing the observed RRLs. A hybrid model consisting of an inner advection-dominated accretion flow disk and an outer thin disk is suggested, which could explain the radio, UV, and X-ray luminosities of the nucleus.
Resumo:
Recent results and data suggest that high magnetic fields in neutron stars (NS) strongly affect the characteristics (radius, mass) of the star. Such stars are even separated into a class known as magnetars, for which the surface magnetic field is greater than 10(14) G. In this work we discuss the effect of such a high magnetic field on the phase transition of a NS to a quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic-field effect in the equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number densities for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front, however, decreases due to the presence of the magnetic field, as the presence of the magnetic field reduces the effective pressure (P). The magnetic field of the star is decreased by the conversion process, and the resultant QS has lower magnetic field than the initial NS.
Resumo:
The absorption and index of refraction of polypyrrole (PPy) and poly-3-methylthiophene (PMeT), from low frequencies up to 4 THz, have been measured by tera-Herz (THz) time-domain spectroscopy. The complex conductance was obtained over this range of frequency. Highly conducting metallic samples follow the Drude model, whereas less conducting ones fit the localization-modified Drude model. The carrier scattering time and mobility in conducting polymers can be directly determined from these measurements.