932 resultados para SQUARES
Resumo:
We find necessary and sufficient conditions for completing an arbitrary 2 by n latin rectangle to an n by n symmetric latin square, for completing an arbitrary 2 by n latin rectangle to an n by n unipotent symmetric latin square, and for completing an arbitrary 1 by n latin rectangle to an n by n idempotent symmetric latin square. Equivalently, we prove necessary and sufficient conditions for the existence of an (n - 1)-edge colouring of K-n (n even), and for an n-edge colouring of K-n (n odd) in which the colours assigned to the edges incident with two vertices are specified in advance.
Resumo:
In this paper we focus on the existence of 2-critical sets in the latin square corresponding to the elementary abelian 2-group of order 2(n). It has been shown by Stinson and van Rees that this latin square contains a 2-critical set of volume 4(n) - 3(n). We provide constructions for 2-critical sets containing 4(n) - 3(n) + 1 - (2(k-1) + 2(m-1) + 2(n-(k+m+1))) entries, where 1 less than or equal to k less than or equal to n and 1 less than or equal to m less than or equal to n - k. That is, we construct 2-critical sets for certain values less than 4(n) - 3(n) + 1 - 3 (.) 2([n /3]-1). The results raise the interesting question of whether, for the given latin square, it is possible to construct 2-critical sets of volume m, where 4(n) - 3(n) + 1 - 3 (.) 2([n/3]-1) < m < 4(n) - 3(n).
Resumo:
Previously the process of finding critical sets in Latin squares has been inside cumbersome by the complexity and number of Latin trades that, must be constructed. In this paper we develop a theory of Latin trades that yields more transparent constructions. We use these Latin trades to find a new class of critical sets for Latin squares which are a product of the Latin square of order 2 with a. back circulant Latin square of odd order.
Resumo:
We consider the problem of illusory or artefactual structure from the visualisation of high-dimensional structureless data. In particular we examine the role of the distance metric in the use of topographic mappings based on the statistical field of multidimensional scaling. We show that the use of a squared Euclidean metric (i.e. the SSTRESs measure) gives rise to an annular structure when the input data is drawn from a high-dimensional isotropic distribution, and we provide a theoretical justification for this observation.
Resumo:
When applying multivariate analysis techniques in information systems and social science disciplines, such as management information systems (MIS) and marketing, the assumption that the empirical data originate from a single homogeneous population is often unrealistic. When applying a causal modeling approach, such as partial least squares (PLS) path modeling, segmentation is a key issue in coping with the problem of heterogeneity in estimated cause-and-effect relationships. This chapter presents a new PLS path modeling approach which classifies units on the basis of the heterogeneity of the estimates in the inner model. If unobserved heterogeneity significantly affects the estimated path model relationships on the aggregate data level, the methodology will allow homogenous groups of observations to be created that exhibit distinctive path model estimates. The approach will, thus, provide differentiated analytical outcomes that permit more precise interpretations of each segment formed. An application on a large data set in an example of the American customer satisfaction index (ACSI) substantiates the methodology’s effectiveness in evaluating PLS path modeling results.
Resumo:
Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%.