859 resultados para SQL SERVER
Resumo:
No existe el fichero T10.
Resumo:
Como no existe la lección T10, tampoco hay ejercicios numerados como T10.xxx.
Resumo:
Modern compilers present a great and ever increasing number of options which can modify the features and behavior of a compiled program. Many of these options are often wasted due to the required comprehensive knowledge about both the underlying architecture and the internal processes of the compiler. In this context, it is usual, not having a single design goal but a more complex set of objectives. In addition, the dependencies between different goals are difficult to be a priori inferred. This paper proposes a strategy for tuning the compilation of any given application. This is accomplished by using an automatic variation of the compilation options by means of multi-objective optimization and evolutionary computation commanded by the NSGA-II algorithm. This allows finding compilation options that simultaneously optimize different objectives. The advantages of our proposal are illustrated by means of a case study based on the well-known Apache web server. Our strategy has demonstrated an ability to find improvements up to 7.5% and up to 27% in context switches and L2 cache misses, respectively, and also discovers the most important bottlenecks involved in the application performance.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Wurst is a protein threading program with an emphasis on high quality sequence to structure alignments (http://www.zbh.uni-hamburg.de/wurst). Submitted sequences are aligned to each of about 3000 templates with a conventional dynamic programming algorithm, but using a score function with sophisticated structure and sequence terms. The structure terms are a log-odds probability of sequence to structure fragment compatibility, obtained from a Bayesian classification procedure. A simplex optimization was used to optimize the sequence-based terms for the goal of alignment and model quality and to balance the sequence and structural contributions against each other. Both sequence and structural terms operate with sequence profiles.
Resumo:
SQL (Structured Query Language) is one of the essential topics in foundation databases courses in higher education. Due to its apparent simple syntax, learning to use the full power of SQL can be a very difficult activity. In this paper, we introduce SQLator, which is a web-based interactive tool for learning SQL. SQLator's key function is the evaluate function, which allows a user to evaluate the correctness of his/her query formulation. The evaluate engine is based on complex heuristic algorithms. The tool also provides instructors the facility to create and populate database schemas with an associated pool of SQL queries. Currently it hosts two databases with a query pool of 300+ across the two databases. The pool is divided into 3 categories according to query complexity. The SQLator user can perform unlimited executions and evaluations on query formulations and/or view the solutions. The SQLator evaluate function has a high rate of success in evaluating the user's statement as correct (or incorrect) corresponding to the question. We will present in this paper, the basic architecture and functions of SQLator. We will further discuss the value of SQLator as an educational technology and report on educational outcomes based on studies conducted at the School of Information Technology and Electrical Engineering, The University of Queensland.
Resumo:
The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort. Recently, we demonstrated the appealing performance of SVRMHC, an SVR-based quantitative modeling method for peptide-MHC interactions, when applied to three mouse class I MHC molecules. Subsequently, we have greatly extended the construction of SVRMHC models and have established such models for more than 40 class I and class II MHC molecules. Here we present the SVRMHC web server for predicting peptide-MHC binding affinities using these models. Benchmarked percentile scores are provided for all predictions. The larger number of SVRMHC models available allowed for an updated evaluation of the performance of the SVRMHC method compared to other well- known linear modeling methods. SVRMHC is an accurate and easy-to-use prediction server for epitope-MHC binding with significant coverage of MHC molecules. We believe it will prove to be a valuable resource for T cell epitope researchers.
Resumo:
Background - Vaccine development in the post-genomic era often begins with the in silico screening of genome information, with the most probable protective antigens being predicted rather than requiring causative microorganisms to be grown. Despite the obvious advantages of this approach – such as speed and cost efficiency – its success remains dependent on the accuracy of antigen prediction. Most approaches use sequence alignment to identify antigens. This is problematic for several reasons. Some proteins lack obvious sequence similarity, although they may share similar structures and biological properties. The antigenicity of a sequence may be encoded in a subtle and recondite manner not amendable to direct identification by sequence alignment. The discovery of truly novel antigens will be frustrated by their lack of similarity to antigens of known provenance. To overcome the limitations of alignment-dependent methods, we propose a new alignment-free approach for antigen prediction, which is based on auto cross covariance (ACC) transformation of protein sequences into uniform vectors of principal amino acid properties. Results - Bacterial, viral and tumour protein datasets were used to derive models for prediction of whole protein antigenicity. Every set consisted of 100 known antigens and 100 non-antigens. The derived models were tested by internal leave-one-out cross-validation and external validation using test sets. An additional five training sets for each class of antigens were used to test the stability of the discrimination between antigens and non-antigens. The models performed well in both validations showing prediction accuracy of 70% to 89%. The models were implemented in a server, which we call VaxiJen. Conclusion - VaxiJen is the first server for alignment-independent prediction of protective antigens. It was developed to allow antigen classification solely based on the physicochemical properties of proteins without recourse to sequence alignment. The server can be used on its own or in combination with alignment-based prediction methods.
Resumo:
Bacterial lipoproteins have many important functions and represent a class of possible vaccine candidates. The prediction of lipoproteins from sequence is thus an important task for computational vaccinology. Naïve-Bayesian networks were trained to identify SpaseII cleavage sites and their preceding signal sequences using a set of 199 distinct lipoprotein sequences. A comprehensive range of sequence models was used to identify the best model for lipoprotein signal sequences. The best performing sequence model was found to be 10-residues in length, including the conserved cysteine lipid attachment site and the nine residues prior to it. The sensitivity of prediction for LipPred was 0.979, while the specificity was 0.742. Here, we describe LipPred, a web server for lipoprotein prediction; available at the URL: http://www.jenner.ac.uk/LipPred/. LipPred is the most accurate method available for the detection of SpaseIIcleaved lipoprotein signal sequences and the prediction of their cleavage sites.
Resumo:
Protein structure prediction is a cornerstone of bioinformatics research. Membrane proteins require their own prediction methods due to their intrinsically different composition. A variety of tools exist for topology prediction of membrane proteins, many of them available on the Internet. The server described in this paper, BPROMPT (Bayesian PRediction Of Membrane Protein Topology), uses a Bayesian Belief Network to combine the results of other prediction methods, providing a more accurate consensus prediction. Topology predictions with accuracies of 70% for prokaryotes and 53% for eukaryotes were achieved. BPROMPT can be accessed at http://www.jenner.ac.uk/BPROMPT.
Resumo:
Background - The main processing pathway for MHC class I ligands involves degradation of proteins by the proteasome, followed by transport of products by the transporter associated with antigen processing (TAP) to the endoplasmic reticulum (ER), where peptides are bound by MHC class I molecules, and then presented on the cell surface by MHCs. The whole process is modeled here using an integrated approach, which we call EpiJen. EpiJen is based on quantitative matrices, derived by the additive method, and applied successively to select epitopes. EpiJen is available free online. Results - To identify epitopes, a source protein is passed through four steps: proteasome cleavage, TAP transport, MHC binding and epitope selection. At each stage, different proportions of non-epitopes are eliminated. The final set of peptides represents no more than 5% of the whole protein sequence and will contain 85% of the true epitopes, as indicated by external validation. Compared to other integrated methods (NetCTL, WAPP and SMM), EpiJen performs best, predicting 61 of the 99 HIV epitopes used in this study. Conclusion - EpiJen is a reliable multi-step algorithm for T cell epitope prediction, which belongs to the next generation of in silico T cell epitope identification methods. These methods aim to reduce subsequent experimental work by improving the success rate of epitope prediction.
Resumo:
Accurate T-cell epitope prediction is a principal objective of computational vaccinology. As a service to the immunology and vaccinology communities at large, we have implemented, as a server on the World Wide Web, a partial least squares-base multivariate statistical approach to the quantitative prediction of peptide binding to major histocom-patibility complexes (MHC), the key checkpoint on the antigen presentation pathway within adaptive,cellular immunity. MHCPred implements robust statistical models for both Class I alleles (HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203,HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3301, HLA-A*6801, HLA-A*6802 and HLA-B*3501) and Class II alleles (HLA-DRB*0401, HLA-DRB*0401and HLA-DRB* 0701).