226 resultados para SPL
Resumo:
This paper presents results of investigations of unusual carbonate formations found in bottom sediments of the South China Sea shelf. These sediments were sampled from a deep fracture found by geophysical methods. According to gas-geochemical data there are high concentrations of methane, hydrogen and carbon dioxide in bottom waters of this area. The carbonate formations were defined as calcium siderite or siderodot by roentgenostructural, microprobe, atomic absorption, and thermal analyses, asawellas infrared spectroscopy. Formation of this mineral results from carbon dioxide and methane flows through bottom sediments.
Resumo:
Primary magmatic phases (spinel, olivine, plagioclase, clinopyroxene, amphibole, and biotite) and secondary phyllosilicates (smectite, chlorite-smectite, and celadonite) were analyzed by electron microprobe in alkalic and tholeiitic dolerites and basalts from Ocean Drilling Program Sites 800, 801, and 802. Aphyric alkalic dolerite sills (Hole 800A) and basalt flows (Holes 801B and 801C) share common mineralogical features: matrix feldspars are strongly zoned from labradorite cores to discrete sodic rims of alkali feldspar with a high Or component, which overlaps that of quench microlites in glassy mesostasis; little fractionated clinopyroxenes are Ti-rich diopsides and augites (with marked aegirine-augite rims at Site 801); rare, brown, Fe**3+-rich amphibole is winchite; and late biotites exhibit variable Ti contents. Alkalic rims to feldspars probably developed at the same time as quenched mesostasis feldspars and late-stage magmatic biotite, and represent the buildup of K-rich hydrous fluids during crystallization. Phenocryst phases in primitive mid-ocean ridge tholeiites from Hole 801C (Mg numbers about 70) have extreme compositions with chrome spinel (Cr/Cr + Al ratios about 0.2-0.4), Ni-rich olivine (Fo90), and highly calcic plagioclase (An90). Later glomerophyric clumps of plagioclase (An75-80) and clinopyroxene (diopside-augite) are strongly zoned and probably reflect rapidly changing melt conditions during upward transport, prior to seafloor quenching. In contrast, phenocryst phases (olivine, plagioclase, and clinopyroxene) in the Hole 802A tholeiites show limited variation and do not have such primitive compositions, reflecting the uniform and different chemical composition of all the bulk rocks. Replacive phyllosilicates in both alkalic and tholeiitic basalts include various colored smectites (Fe-, Mg-, and Al-saponites), chlorite-smectite and celadonite. Smectite compositions typically reflect the replaced host composition; glass is replaced by brown Fe-saponites (variable Fe/Mg ratios) and olivine by greenish Mg-saponites (or Al-rich chlorite-smectite).
Resumo:
Sedimentary cover on the bottom of the Northwest Atlantic Ocean is underlain by Late Jurassic - Cretaceous tholeiite-basalt formation. It consists of come sedimentary formations with different lithologic features and age. Their composition, stratigraphic position and, distribution are described on materials of deep-sea drilling. Mineralogical and geochemical studies of DSDP Leg 43 and Leg 44 holes lead to new ideas about composition and genesis of some sediment types of and their associations. High metal contents in the chalk formation of black clays on the Bermuda Rise probably result from exhalations. Connection of red-colored and speckled deposits with hiatuses in sedimentation is shown. Main stages of geological history of the North American Basin are reflected in accumulation of the followed formations: ancient carbonate formation (Late Jurassic - Early Cretaceous), formation of black clays rich in organic matter (Cretaceous), formation of speckled clays (Late Cretaceous), siliceous-clayey turbidite formation (Eocene), hemipelagic and pelagic clayey formation (Neogene), and terrigenous turbidite formation (Pleistocene).
Resumo:
Peridotite samples recovered from IODP Site U1309 at the Atlantis Massif in the Mid-Atlantic Ridge were examined to understand magmatic processes for the oceanic core complex formation. Original peridotite was fragmented, and the limited short peridotite intervals are now surrounded by a huge gabbro body probably formed by late-stage melt injections. Each peridotite interval has various petrographical and geochemical features. A spinel harzburgite in contact with gabbro shows evidence of limited melt penetrations causing gradual compositional change, in terms of trace-element compositions of pyroxenes, as well as modal change near the boundary. Geochemistry of clinopyroxenes with least melt effects indicates that the harzburgite is originally mantle residue formed by partial melting under polybaric conditions, and that such a depleted peridotite is one of the components of the oceanic core complex. Some of plagioclase-bearing peridotites, on the other hand, have more complicated origin. Although their original features were partly overprinted by the injected melt, the original peridotites, both residual and non-residual materials, were possibly derived from the upper mantle. This suggests that the melt injected around an upper mantle region or into mantle material fragments. The injected melt was possibly generated at the ridge-segment center and, then, moved and evolved toward the segment end beneath the oceanic core complex.
Resumo:
During Leg 125, two serpentinite seamounts were drilled in the Mariana and Izu-Ogasawara forearcs. Together with abundant serpentinized peridotites, low-grade metamorphic rocks were recovered from both seamounts. The metamorphic rocks obtained from Hole 778A on Conical Seamount on the Mariana forearc contain common blueschist facies minerals, lawsonite, aragonite, blue amphibole, and sodic pyroxene. Approximate metamorphic conditions of these rocks are 150° to 250° C and 5 to 6 kb. These rocks are considered to have been uplifted by diapirism of serpentinite from a deeper portion within the subduction zone. This discovery presents direct evidence that blueschist facies metamorphism actually takes place within a subduction zone and provides new insight about trench-forearc tectonics. The diagnostic mineral assemblage of the metamorphic rocks from Holes 783A and 784A on Torishima Forearc Seamount, in the Izu-Ogasawara region, is actinolite + prehnite + epidote, with a subassemblage of chlorite + quartz + albite + H2O, which is typical of low-pressure type, prehnite-actinolite facies of Liou et al. (1985). This metamorphism may represent ocean-floor metamorphism within trapped oceanic crust or in-situ metamorphism that occurred at depths beneath the island-arc.
Resumo:
This paper documents the evolutionary history of Cycladophora davisiana Ehrenberg from an uppermost Miocene to Pleistocene sedimentary record in the high-latitude Northwest Pacific. It apparently evolved from C. sakaii Motoyama through a series of intermediates. C. sakaii has a relatively large shell with an external spongy layer. The evolutionary transition is characterized by a relatively rapid decrease in thorax size with a reduction of the spongy appendage. This change occurred during about 0.4 m.y. from 2.8 to 2.4 Ma without cladogenesis. Following this interval, a decrease in thorax size continued gradually up to the Recent, resulting in a very small morphology. Although the population of C. davisiana first appeared at about 2.5 Ma, some morphotypic specimens may occur in earlier periods as indistinguishable very small endmembers in the C. sakaii populations. Timing of the first appearance events both of morphotypic specimens and of a population of C. davisiana in Site 192 and previously reported cores does not disprove the idea that C. davisiana evolved first in the Northwest Pacific region, and later migrated into other regions of the world ocean. Biometrics clearly indicate no direct phylogenetic relationships between C. davisiana and C. cornutoides Kling in the studied core. Thus, the latter species, which was originally described as a variation and later elevated to a subspecies of the former species, is separated from the former species and raised to the species rank.
Resumo:
Volcaniclastic rocks of Late Cretaceous age occur in four out of five sites (525, 527, 528, 529) drilled on the crest and the northwest flank of the Walvis Ridge during Leg 74. They are mostly interlayered with and overlie basement in the lowermost 10-100 m of the sedimentary section. Rocks from Holes 525A and 528 were studied megascopically and microscopically, by XRD, and XRF chemical analyses of whole-rock major and trace elements were undertaken. The dominant rock of Hole 528 volcaniclastics is a fine-grained (silt to fine sand), mostly matrix-bearing (partly matrix-rich) vitric "tuff," occurring as 5-110 cm thick, partly graded layers, some of which are distinctly bedded. Volcaniclastics of Hole 525A are generally richer in sanidine crystals. Most rocks contain some nonvolcanic clasts, chiefly foraminifers and lesser amounts of shallow-water fossil debris. Scoria shards, clasts of tachylite, and fine-grained basalts as well as chemical analyses suggest a basaltic to intermediate composition for most rocks of Hole 528, whereas volcaniclastics of Hole 525A are more silicic. The occurrence of tachylite and epiclastic, coarse-grained, basaltic clasts throughout the volcaniclastic sequence at Site 528 indicates shallow-water eruptions and perhaps even ocean island volcanism. The minor occurrence in Hole 528 of trachytic? pumice shards with phenocrysts of K-feldspar and the abundance of such shards in rocks from Hole 525A indicate Plinian eruptions characteristic of more mature stages of ocean island evolution. The sedimentary structures of volcaniclastic layers and their occurrence within deep sea calcareous oozes indicate a mass flow origin. Diagenetic alteration of the volcaniclastic rocks is pronounced, and four major stages of glass shard alteration are distinguished. Despite the effects of alteration and small-scale redistribution of elements and the admixture of nonvolcanic components, there were no drastic changes in the chemical composition of the rocks, except for pronounced increases in K and Rb and decreases in Ca and Fe. The basaltic volcaniclastic rocks very much resemble basement basalts in that they are moderately evolved tholeiites derived from an LIL-enriched mantle source with Zr/Nb ratios (Hole 528) of 5 to 6. This, in conjunction with the interbedding of volcaniclastic rocks and basement lavas, indicates contemporaneous seamount or island and basement volcanic activity involving magmas derived from similar sources.
Resumo:
Basalts recovered from Hole 504B during ODP Leg 111 are more or less altered, but there is no sign of strong shear stress or widespread penetrative deformation; hence, they retain well their primary (igneous) structures and textures. The effect of alteration is recognized as the partial or total replacement of primary minerals (olivine, clinopyroxene, and plagioclase) by secondary minerals and as the development of secondary minerals in open spaces (e.g., veins, fractures, vugs, or breccia matrix). The secondary minerals include zeolite (laumontite and stilbite), prehnite, chlorite, epidote, Plagioclase (albite and/or oligoclase), amphibole (anthophyllite, cummingtonite, actinolite, and hornblende), sodic augite, sphene, talc, anhydrite, chalcopyrite, pyrite, Fe-Ti oxide, and quartz. Selected secondary minerals from several tens of samples were analyzed by means of an electron-probe microanalyzer; the results are presented along with brief considerations of their compositional features. In terms of the model basaltic system, the following two types of low-variance (three-phase) mineral assemblages were observed: prehnite-epidote-laumontite and prehnite-actinolite-epidote; both include chlorite, albite and/or oligoclase, sphene, and quartz. The mineral parageneses delineated by these low-variance mineral assemblages suggest that the metamorphic grade ranges from the zeolite facies to the prehnite-actinolite facies. The common occurrence of prehnite indicates that greenschist facies conditions were not attained even in the deepest level of Hole 504B, which, in a strict sense, contradicts the previous interpretation that the lower portion of Hole 504B suffered greenschist facies alteration.
Resumo:
Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.
Resumo:
During ODP Leg 209, a magma-starved area of the Mid-Atlantic Ridge (MAR) was drilled in the vicinity of the Fifteen-Twenty Fracture Zone (FZ) that offsets one of the slowest portions of the spreading ridge. We present here the results of a bulk rock multi-elemental study of 27 peridotites drilled at Sites 1272 and 1274 (to the south and the north of the FZ, respectively). The peridotites comprise mainly of harzburgites with minor dunites. Clinopyroxene (Cpx), which is interstitial and interpreted as secondary, is observed in Site 1274 peridotites. Sites 1272 and 1274 peridotites have low Al2O3 contents (<1 anhydrous wt.%), high Mg# (>91.5), and bulk rock trace elements compositions mostly below 0.1X primitive mantle (PM). These peridotites, and in particular Site 1272 peridotites, represent the most depleted peridotites yet sampled at a slow spreading ridge. Their compositions indicate high degrees of partial melting and melt extraction. A single open-system melting event (melting plus percolation of melts produced within upwelling mantle) can explain their highly depleted yet linear chondrite-normalized REE patterns, characterized by a steady depletion from HREE to LREE. Late melt-rock reactions and precipitation of Cpx explains the slightly less depleted compositions of Site 1274 peridotites. Hence, the differences in composition between Sites 1272 and 1274 peridotites do not provide evidence for regional variations in the degrees of partial melting from the south to the north of the FZ. The occurrence of highly refractory peridotites in the Fifteen-Twenty area suggests we sampled a more actively convecting mantle than generally supposed below slow spreading centers.
Resumo:
IODP Hole U1309D (Atlantis Massif, Mid-Atlantic Ridge 30°N) is the second deepest hole drilled into slow spread gabbroic lithosphere. It comprises 5.4% of olivine-rich troctolites (~ > 70% olivine), possibly the most primitive gabbroic rocks ever drilled at mid-ocean ridges. We present the result of an in situ trace element study carried out on a series of olivine-rich troctolites, and neighbouring troctolites and gabbros, from olivine-rich intervals in Hole U1309D. Olivine-rich troctolites display poikilitic textures; coarse-grained subhedral to medium-grained rounded olivine crystals are included into large undeformed clinopyroxene and plagioclase poikiloblasts. In contrast, gabbros and troctolites have irregularly seriate textures, with highly variable grain sizes, and locally poikilitic clinopyroxene oikocrysts in troctolites. Clinopyroxene is high Mg# augite (Mg# 87 in olivine-rich troctolites to 82 in gabbros), and plagioclase has anorthite contents ranging from 77 in olivine-rich troctolites to 68 in gabbros. Olivine has high forsterite contents (82-88 in olivine-rich troctolites, to 78-83 in gabbros) and is in Mg-Fe equilibrium with clinopyroxene. Clinopyroxene cores and plagioclase are depleted in trace elements (e.g., Ybcpx ~ 5-11 * Chondrite), they are in equilibrium with the same MORB-type melt in all studied rock-types. These compositions are not consistent with the progressively more trace element enriched (evolved) compositions expected from olivine rich primitive products to gabbros in a MORB cumulate sequence. They indicate that clinopyroxene and plagioclase crystallized concurrently, after melts having the same trace element composition, consistent with crystallization in an open system with a buffered magma composition. The slight trace element enrichments and lower Cr contents observed in clinopyroxene rims and interstitial grains results from crystallization of late-stage differentiated melts, probably indicating the closure of the magmatic system. In contrast to clinopyroxene and plagioclase, olivine is not in equilibrium with MORB, but with a highly fractionated depleted melt, similar to that in equilibrium with refractory oceanic peridotites, thus possibly indicating a mantle origin. In addition, textural relationships suggest that olivine was in part assimilated by the basaltic melts after which clinopyroxene and plagioclase crystallized (impregnation). These observations suggest a complex crystallization history in an open system involving impregnation by MORB-type melt(s) of an olivine-rich rock or mush. The documented magmatic processes suggest that olivine-rich troctolites were formed in a zone with large magmatic transfer and accumulation, similar to the mantle-crust transition zone documented in ophiolites and at fast spreading ridges.
Resumo:
Tholeiitic basalts were obtained from basaltic basement ranging in age from 6 to 17 m.y. on IPOD/DSDP Leg 63. The main rock types encountered at all sites but 473 are basaltic pillow lavas. Although many of these pillow basalts are highly or moderately altered, fresh glass is usually present. At Site 473, we recovered coarse-grained, massive basalts; no clearly defined pillowed forms were observed. Phenocrysts or microphenocrysts present in the Leg 63 basalts are Plagioclase and clinopyroxene at Site 469; olivine, Plagioclase, and spinel at Site 470; and olivine, Plagioclase, and clinopyroxene at Sites 472 and 473. Olivines of the basalts from Holes 470A and 472 (Fo85-88) are generally more magnesian than those of the Hole 473 basalts (Fo77-81). Also, plagioclases of Holes 470A and 472 basalts (An70-85) are generally more calcic than those of Holes 469 and 473 basalts (An66-72). Geochemical study of the Leg 63 basalts indicates that in all cases they are large-ion-lithophile (LIL) element depleted tholeiites like typical abyssal tholeiites. In particular, they are very similar in composition to those described from the eastern Pacific, although the degree of iron enrichment found in the Leg 63 basalts is not as extensive as in basalts from the Galapagos spreading center. Hence, the geochemical evidence of the Leg 63 basalts is compatible with their formation at a spreading center. Compositional variations in Leg 63 basalts from any single drill hole is small. Major and trace element data indicate that the samples from Holes 469 and 473 are more fractionated in chemical composition than are the samples from Holes 470A and 472; this compositional variation may be largely ascribed to differences in the extent of shallow-level fractional crystallization of similar parental magma. The Hole 472 samples, however, show a LIL element character distinct from the other Leg 63 samples.
Resumo:
This paper reports the results of a preliminary palaeomagnetic investigation of the Admiralty Intrusives complex of northern Victoria Land, Antarctica. The samples were collected at Mt. Supernal and Inferno Peak, two pinions mainly formed of granodiorite and minor tonalite and emplaced at ab. 350 Ma at a high crustal level, as shown by amphibole geobarometric data and occurrence of miarolitic cavities. Microprobe and isothermal remanence analyses showed that magnetite. characterized by low coercivity and Curic point in the range 550-570 °C is the only primary ferromagnetic mineral. Stepwise thermaldemagnetization succeeded in isolatingamagnetization component. stable up to 530 °C. The virtual geomagnetic poles (VGPs) of the two plutons are different. That of Inferno Peak is consistent with the Australian palaeopoles of late Devonian-early Carboniferous age, whereas the location of the Mt. Supernal VGP probably results from the tectonic activity which affected the Ross Sea region during the Cenozoic.
Resumo:
The book summarizes data on distribution and composition of sedimentary material suspended in waters of the Atlantic Ocean and its seas. Results of observations of Soviet and foreign expeditions are given. Distribution of suspended matter in sections across the ocean, as well as in the most studied seas are shown. New data on grain size, mineral and chemical composition of suspended matter are published. Summary of history of investigation of bottom sediments from the Atlantic Ocean from the first scientific cruises to the present is done. A brief description of sediment types in the ocean and a detailed description of Mediterranean Sea sediments are given.