942 resultados para SPECIES DISTRIBUTION MODELLING
Resumo:
This article shows the current distribution of seven ant species of the genus Formica (Hymenoptera, Formicidae, Formicinae) in the canton Waadt. Five species of wood ants (Formica subgenus Formica s.str.: F. rufa, F. polyctena, F. pratensis, F. lugubris et F. paralugubris) and two close species F (Formica) truncorum) et F. (Raptiformica) snaguinea) were investigated. The records originate from different surveys between 1996 and 2009 and offer the opportunity of an up to date overview of the species distribution.
Resumo:
Report for the scientific sojourn carried out at the University of California at Berkeley, from September to December 2007. Environmental niche modelling (ENM) techniques are powerful tools to predict species potential distributions. In the last ten years, a plethora of novel methodological approaches and modelling techniques have been developed. During three months, I stayed at the University of California, Berkeley, working under the supervision of Dr. David R. Vieites. The aim of our work was to quantify the error committed by these techniques, but also to test how an increase in the sample size affects the resultant predictions. Using MaxEnt software we generated distribution predictive maps, from different sample sizes, of the Eurasian quail (Coturnix coturnix) in the Iberian Peninsula. The quail is a generalist species from a climatic point of view, but an habitat specialist. The resultant distribution maps were compared with the real distribution of the species. This distribution was obtained from recent bird atlases from Spain and Portugal. Results show that ENM techniques can have important errors when predicting the species distribution of generalist species. Moreover, an increase of sample size is not necessary related with a better performance of the models. We conclude that a deep knowledge of the species’ biology and the variables affecting their distribution is crucial for an optimal modelling. The lack of this knowledge can induce to wrong conclusions.
Resumo:
Oropharyngeal candidiasis continues to be considered the most common opportunistic disease in Aids patients. This study was designed to investigate species distribution, serotype and antifungal susceptibility profile among Candida spp. isolated from the oral cavity of Aids patients recruited from six Brazilian university centers. Oral swabs from 130 Aids patients were plated onto CHROMagar Candida medium and 142 isolates were recovered. Yeast isolates were identified by classical methods and serotyped using the Candida Check® system-Iatron. Antifungal susceptibility testing was performed according to the NCCLS microbroth assay. C. albicans was the most frequently isolated species (91%), and 70% of the isolates belonged to serotype A. We detected 12 episodes of co-infection (9%), including co-infection with both serotypes of C. albicans. Non-albicans species were isolated from 12 episodes, 50% of them exhibited DDS or resistance to azoles. Otherwise, only 8 out 130 isolates of C. albicans exhibited DDS or resistance to azoles. Brazilian Aids patients are infected mainly by C. albicans serotype A, most of them susceptible to all antifungal drugs.
Resumo:
Five species are included in the Simulium siolii group, which is placed in the subgenus Psaroniocompsa (Diptera: Simuliidae). Of these five species, only two (Simulium siolii Py-Daniel and Simulium tergospinosum Hamada) have been described in all their life stages, except eggs. Knowledge of the taxonomic characters of all life stages of a species is important in order to clarify interspecific and higher-level taxonomic relationships. The objectives of the present study are to describe the male of Simulium damascenoi Py-Daniel, to provide a list of black-fly species their bionomics and distributions in the state of Amapá, Brazil, and to provide an identification key for larvae and pupae for these species.
Resumo:
Anopheles (Nyssorhynchus) lanei Galvão and Amaral is here redescribed using morphological characteristics of adult, male and female, fourth instar larva and pupa. The larva, pupa, and male genitalia are illustrated. Diagnostic morphological characters of adults, male genitalia, fourth instar larva and pupa are provided to distinguish An. lanei from other species of the Argyritarsis section. Species distribution data are based on the published literature records and bionomics data are based on both literature records and field data.
Resumo:
Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.
Resumo:
Spatial data on species distributions are available in two main forms, point locations and distribution maps (polygon ranges and grids). The first are often temporally and spatially biased, and too discontinuous, to be useful (untransformed) in spatial analyses. A variety of modelling approaches are used to transform point locations into maps. We discuss the attributes that point location data and distribution maps must satisfy in order to be useful in conservation planning. We recommend that before point location data are used to produce and/or evaluate distribution models, the dataset should be assessed under a set of criteria, including sample size, age of data, environmental/geographical coverage, independence, accuracy, time relevance and (often forgotten) representation of areas of permanent and natural presence of the species. Distribution maps must satisfy additional attributes if used for conservation analyses and strategies, including minimizing commission and omission errors, credibility of the source/assessors and availability for public screening. We review currently available databases for mammals globally and show that they are highly variable in complying with these attributes. The heterogeneity and weakness of spatial data seriously constrain their utility to global and also sub-global scale conservation analyses.
Resumo:
Studies of species range determinants have traditionally focused on abiotic variables (typically climatic conditions), and therefore the recent explicit consideration of biotic interactions represents an important advance in the field. While these studies clearly support the role of biotic interactions in shaping species distributions, most examine only the influence of a single species and/or a single interaction, failing to account for species being subject to multiple concurrent interactions. By fitting species distribution models (SDMs), we examine the influence of multiple vertical (i.e., grazing, trampling, and manuring by mammalian herbivores) and horizontal (i.e., competition and facilitation; estimated from the cover of dominant plant species) interspecific interactions on the occurrence and cover of 41 alpine tundra plant species. Adding plant-plant interactions to baseline SDMs (using five field-quantified abiotic variables) significantly improved models' predictive power for independent data, while herbivore-related variables had only a weak influence. Overall, abiotic variables had the strongest individual contributions to the distribution of alpine tundra plants, with the importance of horizontal interaction variables exceeding that of vertical interaction variables. These results were consistent across three modeling techniques, for both species occurrence and cover, demonstrating the pattern to be robust. Thus, the explicit consideration of multiple biotic interactions reveals that plant-plant interactions exert control over the fine-scale distribution of vascular species that is comparable to abiotic drivers and considerably stronger than herbivores in this low-energy system.
Resumo:
Les écosystèmes fournissent de nombreuses ressources et services écologiques qui sont utiles à la population humaine. La biodiversité est une composante essentielle des écosystèmes et maintient de nombreux services. Afin d'assurer la permanence des services écosystémiques, des mesures doivent être prises pour conserver la biodiversité. Dans ce but, l'acquisition d'informations détaillées sur la distribution de la biodiversité dans l'espace est essentielle. Les modèles de distribution d'espèces (SDMs) sont des modèles empiriques qui mettent en lien des observations de terrain (présences ou absences d'une espèce) avec des descripteurs de l'environnement, selon des courbes de réponses statistiques qui décrive la niche réalisée des espèces. Ces modèles fournissent des projections spatiales indiquant les lieux les plus favorables pour les espèces considérées. Le principal objectif de cette thèse est de fournir des projections plus réalistes de la distribution des espèces et des communautés en montagne pour le climat présent et futur en considérant non-seulement des variables abiotiques mais aussi biotiques. Les régions de montagne et l'écosystème alpin sont très sensibles aux changements globaux et en même temps assurent de nombreux services écosystémiques. Cette thèse est séparée en trois parties : (i) fournir une meilleure compréhension du rôle des interactions biotiques dans la distribution des espèces et l'assemblage des communautés en montagne (ouest des Alpes Suisses), (ii) permettre le développement d'une nouvelle approche pour modéliser la distribution spatiale de la biodiversité, (iii) fournir des projections plus réalistes de la distribution future des espèces ainsi que de la composition des communautés. En me focalisant sur les papillons, bourdons et plantes vasculaires, j'ai détecté des interactions biotiques importantes qui lient les espèces entre elles. J'ai également identifié la signature du filtre de l'environnement sur les communautés en haute altitude confirmant l'utilité des SDMs pour reproduire ce type de processus. A partir de ces études, j'ai contribué à l'amélioration méthodologique des SDMs dans le but de prédire les communautés en incluant les interactions biotiques et également les processus non-déterministes par une approche probabiliste. Cette approche permet de prédire non-seulement la distribution d'espèces individuelles, mais également celle de communautés dans leur entier en empilant les projections (S-SDMs). Finalement, j'ai utilisé cet outil pour prédire la distribution d'espèces et de communautés dans le passé et le futur. En particulier, j'ai modélisé la migration post-glaciaire de Trollius europaeus qui est à l'origine de la structure génétique intra-spécifique chez cette espèce et évalué les risques de perte face au changement climatique. Finalement, j'ai simulé la distribution des communautés de bourdons pour le 21e siècle afin d'évaluer les changements probables dans ce groupe important de pollinisateurs. La diversité fonctionnelle des bourdons va être altérée par la perte d'espèces spécialistes de haute altitude et ceci va influencer la pollinisation des plantes en haute altitude. - Ecosystems provide a multitude of resources and ecological services, which are useful to human. Biodiversity is an essential component of those ecosystems and guarantee many services. To assure the permanence of ecosystem services for future generation, measure should be applied to conserve biodiversity. For this purpose, the acquisition of detailed information on how biodiversity implicated in ecosystem function is distributed in space is essential. Species distribution models (SDMs) are empirical models relating field observations to environmental predictors based on statistically-derived response surfaces that fit the realized niche. These models result in spatial predictions indicating locations of the most suitable environment for the species and may potentially be applied to predict composition of communities and their functional properties. The main objective of this thesis was to provide more accurate projections of species and communities distribution under current and future climate in mountains by considering not solely abiotic but also biotic drivers of species distribution. Mountain areas and alpine ecosystems are considered as particularly sensitive to global changes and are also sources of essential ecosystem services. This thesis had three main goals: (i) a better ecological understanding of biotic interactions and how they shape the distribution of species and communities, (ii) the development of a novel approach to the spatial modeling of biodiversity, that can account for biotic interactions, and (iii) ecologically more realistic projections of future species distributions, of future composition and structure of communities. Focusing on butterfly and bumblebees in interaction with the vegetation, I detected important biotic interactions for species distribution and community composition of both plant and insects along environmental gradients. I identified the signature of environmental filtering processes at high elevation confirming the suitability of SDMs for reproducing patterns of filtering. Using those case-studies, I improved SDMs by incorporating biotic interaction and accounting for non-deterministic processes and uncertainty using a probabilistic based approach. I used improved modeling to forecast the distribution of species through the past and future climate changes. SDMs hindcasting allowed a better understanding of the spatial range dynamic of Trollius europaeus in Europe at the origin of the species intra-specific genetic diversity and identified the risk of loss of this genetic diversity caused by climate change. By simulating the future distribution of all bumblebee species in the western Swiss Alps under nine climate change scenarios for the 21st century, I found that the functional diversity of this pollinator guild will be largely affected by climate change through the loss of high elevation specialists. In turn, this will have important consequences on alpine plant pollination.
Resumo:
Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of 'translators' between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes.
Resumo:
Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic variables, but few SDM studies include biotic predictors to help explain species distributions. Therefore, most predictions of species distributions under future climates assume implicitly that biotic interactions remain constant or exert only minor influence on large-scale spatial distributions, which is also largely expected for species with high competitive ability. We examined the extent to which variance explained by SDMs can be attributed to abiotic or biotic predictors and how this depends on species traits. We fit generalized linear models for 11 common tree species in Switzerland using three different sets of predictor variables: biotic, abiotic, and the combination of both sets. We used variance partitioning to estimate the proportion of the variance explained by biotic and abiotic predictors, jointly and independently. Inclusion of biotic predictors improved the SDMs substantially. The joint contribution of biotic and abiotic predictors to explained deviance was relatively small (similar to 9%) compared to the contribution of each predictor set individually (similar to 20% each), indicating that the additional information on the realized niche brought by adding other species as predictors was largely independent of the abiotic (topo-climatic) predictors. The influence of biotic predictors was relatively high for species preferably growing under low disturbance and low abiotic stress, species with long seed dispersal distances, species with high shade tolerance as juveniles and adults, and species that occur frequently and are dominant across the landscape. The influence of biotic variables on SDM performance indicates that community composition and other local biotic factors or abiotic processes not included in the abiotic predictors strongly influence prediction of species distributions. Improved prediction of species' potential distributions in future climates and communities may assist strategies for sustainable forest management.
Resumo:
Summary Landscapes are continuously changing. Natural forces of change such as heavy rainfall and fires can exert lasting influences on their physical form. However, changes related to human activities have often shaped landscapes more distinctly. In Western Europe, especially modern agricultural practices and the expanse of overbuilt land have left their marks in the landscapes since the middle of the 20th century. In the recent years men realised that mare and more changes that were formerly attributed to natural forces might indirectly be the result of their own action. Perhaps the most striking landscape change indirectly driven by human activity we can witness in these days is the large withdrawal of Alpine glaciers. Together with the landscapes also habitats of animal and plant species have undergone vast and sometimes rapid changes that have been hold responsible for the ongoing loss of biodiversity. Thereby, still little knowledge is available about probable effects of the rate of landscape change on species persistence and disappearance. Therefore, the development and speed of land use/land cover in the Swiss communes between the 1950s and 1990s were reconstructed using 10 parameters from agriculture and housing censuses, and were further correlated with changes in butterfly species occurrences. Cluster analyses were used to detect spatial patterns of change on broad spatial scales. Thereby, clusters of communes showing similar changes or transformation rates were identified for single decades and put into a temporally dynamic sequence. The obtained picture on the changes showed a prevalent replacement of non-intensive agriculture by intensive practices, a strong spreading of urban communes around city centres, and transitions towards larger farm sizes in the mountainous areas. Increasing transformation rates toward more intensive agricultural managements were especially found until the 1970s, whereas afterwards the trends were commonly negative. However, transformation rates representing the development of residential buildings showed positive courses at any time. The analyses concerning the butterfly species showed that grassland species reacted sensitively to the density of livestock in the communes. This might indicate the augmented use of dry grasslands as cattle pastures that show altered plant species compositions. Furthermore, these species also decreased in communes where farms with an agricultural area >5ha have disappeared. The species of the wetland habitats were favoured in communes with smaller fractions of agricultural areas and lower densities of large farms (>10ha) but did not show any correlation to transformation rates. It was concluded from these analyses that transformation rates might influence species disappearance to a certain extent but that states of the environmental predictors might generally outweigh the importance of the corresponding rates. Information on the current distribution of species is evident for nature conservation. Planning authorities that define priority areas for species protection or examine and authorise construction projects need to know about the spatial distribution of species. Hence, models that simulate the potential spatial distribution of species have become important decision tools. The underlying statistical analyses such as the widely used generalised linear models (GLM) often rely on binary species presence-absence data. However, often only species presence data have been colleted, especially for vagrant, rare or cryptic species such as butterflies or reptiles. Modellers have thus introduced randomly selected absence data to design distribution models. Yet, selecting false absence data might bias the model results. Therefore, we investigated several strategies to select more reliable absence data to model the distribution of butterfly species based on historical distribution data. The results showed that better models were obtained when historical data from longer time periods were considered. Furthermore, model performance was additionally increased when long-term data of species that show similar habitat requirements as the modelled species were used. This successful methodological approach was further applied to assess consequences of future landscape changes on the occurrence of butterfly species inhabiting dry grasslands or wetlands. These habitat types have been subjected to strong deterioration in the recent decades, what makes their protection a future mission. Four spatially explicit scenarios that described (i) ongoing land use changes as observed between 1985 and 1997, (ii) liberalised agricultural markets, and (iii) slightly and (iv) strongly lowered agricultural production provided probable directions of landscape change. Current species-environment relationships were derived from a statistical model and used to predict future occurrence probabilities in six major biogeographical regions in Switzerland, comprising the Jura Mountains, the Plateau, the Northern and Southern Alps, as well as the Western and Eastern Central Alps. The main results were that dry grasslands species profited from lowered agricultural production, whereas overgrowth of open areas in the liberalisation scenario might impair species occurrence. The wetland species mostly responded with decreases in their occurrence probabilities in the scenarios, due to a loss of their preferred habitat. Further analyses about factors currently influencing species occurrences confirmed anthropogenic causes such as urbanisation, abandonment of open land, and agricultural intensification. Hence, landscape planning should pay more attention to these forces in areas currently inhabited by these butterfly species to enable sustainable species persistence. In this thesis historical data were intensively used to reconstruct past developments and to make them useful for current investigations. Yet, the availability of historical data and the analyses on broader spatial scales has often limited the explanatory power of the conducted analyses. Meaningful descriptors of former habitat characteristics and abundant species distribution data are generally sparse, especially for fine scale analyses. However, this situation can be ameliorated by broadening the extent of the study site and the used grain size, as was done in this thesis by considering the whole of Switzerland with its communes. Nevertheless, current monitoring projects and data recording techniques are promising data sources that might allow more detailed analyses about effects of long-term species reactions on landscape changes in the near future. This work, however, also showed the value of historical species distribution data as for example their potential to locate still unknown species occurrences. The results might therefore contribute to further research activities that investigate current and future species distributions considering the immense richness of historical distribution data. Résumé Les paysages changent continuellement. Des farces naturelles comme des pluies violentes ou des feux peuvent avoir une influence durable sur la forme du paysage. Cependant, les changements attribués aux activités humaines ont souvent modelé les paysages plus profondément. Depuis les années 1950 surtout, les pratiques agricoles modernes ou l'expansion des surfaces d'habitat et d'infrastructure ont caractérisé le développement du paysage en Europe de l'Ouest. Ces dernières années, l'homme a commencé à réaliser que beaucoup de changements «naturels » pourraient indirectement résulter de ses propres activités. Le changement de paysage le plus apparent dont nous sommes témoins de nos jours est probablement l'immense retraite des glaciers alpins. Avec les paysages, les habitats des animaux et des plantes ont aussi été exposés à des changements vastes et quelquefois rapides, tenus pour coresponsable de la continuelle diminution de la biodiversité. Cependant, nous savons peu des effets probables de la rapidité des changements du paysage sur la persistance et la disparition des espèces. Le développement et la rapidité du changement de l'utilisation et de la couverture du sol dans les communes suisses entre les années 50 et 90 ont donc été reconstruits au moyen de 10 variables issues des recensements agricoles et résidentiels et ont été corrélés avec des changements de présence des papillons diurnes. Des analyses de groupes (Cluster analyses) ont été utilisées pour détecter des arrangements spatiaux de changements à l'échelle de la Suisse. Des communes avec des changements ou rapidités comparables ont été délimitées pour des décennies séparées et ont été placées en séquence temporelle, en rendrent une certaine dynamique du changement. Les résultats ont montré un remplacement répandu d'une agriculture extensive des pratiques intensives, une forte expansion des faubourgs urbains autour des grandes cités et des transitions vers de plus grandes surfaces d'exploitation dans les Alpes. Dans le cas des exploitations agricoles, des taux de changement croissants ont été observés jusqu'aux années 70, alors que la tendance a généralement été inversée dans les années suivantes. Par contre, la vitesse de construction des nouvelles maisons a montré des courbes positives pendant les 50 années. Les analyses sur la réaction des papillons diurnes ont montré que les espèces des prairies sèches supportaient une grande densité de bétail. Il est possible que dans ces communes beaucoup des prairies sèches aient été fertilisées et utilisées comme pâturages, qui ont une autre composition floristique. De plus, les espèces ont diminué dans les communes caractérisées par une rapide perte des fermes avec une surface cultivable supérieure à 5 ha. Les espèces des marais ont été favorisées dans des communes avec peu de surface cultivable et peu de grandes fermes, mais n'ont pas réagi aux taux de changement. Il en a donc été conclu que la rapidité des changements pourrait expliquer les disparitions d'espèces dans certains cas, mais que les variables prédictives qui expriment des états pourraient être des descripteurs plus importants. Des informations sur la distribution récente des espèces sont importantes par rapport aux mesures pour la conservation de la nature. Pour des autorités occupées à définir des zones de protection prioritaires ou à autoriser des projets de construction, ces informations sont indispensables. Les modèles de distribution spatiale d'espèces sont donc devenus des moyens de décision importants. Les méthodes statistiques courantes comme les modèles linéaires généralisés (GLM) demandent des données de présence et d'absence des espèces. Cependant, souvent seules les données de présence sont disponibles, surtout pour les animaux migrants, rares ou cryptiques comme des papillons ou des reptiles. C'est pourquoi certains modélisateurs ont choisi des absences au hasard, avec le risque d'influencer le résultat en choisissant des fausses absences. Nous avons établi plusieurs stratégies, basées sur des données de distribution historique des papillons diurnes, pour sélectionner des absences plus fiables. Les résultats ont démontré que de meilleurs modèles pouvaient être obtenus lorsque les données proviennent des périodes de temps plus longues. En plus, la performance des modèles a pu être augmentée en considérant des données de distribution à long terme d'espèces qui occupent des habitats similaires à ceux de l'espèce cible. Vu le succès de cette stratégie, elle a été utilisée pour évaluer les effets potentiels des changements de paysage futurs sur la distribution des papillons des prairies sèches et marais, deux habitats qui ont souffert de graves détériorations. Quatre scénarios spatialement explicites, décrivant (i) l'extrapolation des changements de l'utilisation de sol tels qu'observés entre 1985 et 1997, (ii) la libéralisation des marchés agricoles, et une production agricole (iii) légèrement amoindrie et (iv) fortement diminuée, ont été utilisés pour générer des directions de changement probables. Les relations actuelles entre la distribution des espèces et l'environnement ont été déterminées par le biais des modèles statistiques et ont été utilisées pour calculer des probabilités de présence selon les scénarios dans six régions biogéographiques majeures de la Suisse, comportant le Jura, le Plateau, les Alpes du Nord, du Sud, centrales orientales et centrales occidentales. Les résultats principaux ont montré que les espèces des prairies sèches pourraient profiter d'une diminution de la production agricole, mais qu'elles pourraient aussi disparaître à cause de l'embroussaillement des terres ouvertes dû à la libéralisation des marchés agricoles. La probabilité de présence des espèces de marais a décrû à cause d'une perte générale des habitats favorables. De plus, les analyses ont confirmé que des causes humaines comme l'urbanisation, l'abandon des terres ouvertes et l'intensification de l'agriculture affectent actuellement ces espèces. Ainsi ces forces devraient être mieux prises en compte lors de planifications paysagères, pour que ces papillons diurnes puissent survivre dans leurs habitats actuels. Dans ce travail de thèse, des données historiques ont été intensivement utilisées pour reconstruire des développements anciens et pour les rendre utiles à des recherches contemporaines. Cependant, la disponibilité des données historiques et les analyses à grande échelle ont souvent limité le pouvoir explicatif des analyses. Des descripteurs pertinents pour caractériser les habitats anciens et des données suffisantes sur la distribution des espèces sont généralement rares, spécialement pour des analyses à des échelles fores. Cette situation peut être améliorée en augmentant l'étendue du site d'étude et la résolution, comme il a été fait dans cette thèse en considérant toute la Suisse avec ses communes. Cependant, les récents projets de surveillance et les techniques de collecte de données sont des sources prometteuses, qui pourraient permettre des analyses plus détaillés sur les réactions à long terme des espèces aux changements de paysage dans le futur. Ce travail a aussi montré la valeur des anciennes données de distribution, par exemple leur potentiel pour aider à localiser des' présences d'espèces encore inconnues. Les résultats peuvent contribuer à des activités de recherche à venir, qui étudieraient les distributions récentes ou futures d'espèces en considérant l'immense richesse des données de distribution historiques.
Resumo:
1. Identifying the boundary of a species' niche from observational and environmental data is a common problem in ecology and conservation biology and a variety of techniques have been developed or applied to model niches and predict distributions. Here, we examine the performance of some pattern-recognition methods as ecological niche models (ENMs). Particularly, one-class pattern recognition is a flexible and seldom used methodology for modelling ecological niches and distributions from presence-only data. The development of one-class methods that perform comparably to two-class methods (for presence/absence data) would remove modelling decisions about sampling pseudo-absences or background data points when absence points are unavailable. 2. We studied nine methods for one-class classification and seven methods for two-class classification (five common to both), all primarily used in pattern recognition and therefore not common in species distribution and ecological niche modelling, across a set of 106 mountain plant species for which presence-absence data was available. We assessed accuracy using standard metrics and compared trade-offs in omission and commission errors between classification groups as well as effects of prevalence and spatial autocorrelation on accuracy. 3. One-class models fit to presence-only data were comparable to two-class models fit to presence-absence data when performance was evaluated with a measure weighting omission and commission errors equally. One-class models were superior for reducing omission errors (i.e. yielding higher sensitivity), and two-classes models were superior for reducing commission errors (i.e. yielding higher specificity). For these methods, spatial autocorrelation was only influential when prevalence was low. 4. These results differ from previous efforts to evaluate alternative modelling approaches to build ENM and are particularly noteworthy because data are from exhaustively sampled populations minimizing false absence records. Accurate, transferable models of species' ecological niches and distributions are needed to advance ecological research and are crucial for effective environmental planning and conservation; the pattern-recognition approaches studied here show good potential for future modelling studies. This study also provides an introduction to promising methods for ecological modelling inherited from the pattern-recognition discipline.
Resumo:
The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of biotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs) on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models (SDMs), we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.
Resumo:
Aim Conservation strategies are in need of predictions that capture spatial community composition and structure. Currently, the methods used to generate these predictions generally focus on deterministic processes and omit important stochastic processes and other unexplained variation in model outputs. Here we test a novel approach of community models that accounts for this variation and determine how well it reproduces observed properties of alpine butterfly communities. Location The western Swiss Alps. Methods We propose a new approach to process probabilistic predictions derived from stacked species distribution models (S-SDMs) in order to predict and assess the uncertainty in the predictions of community properties. We test the utility of our novel approach against a traditional threshold-based approach. We used mountain butterfly communities spanning a large elevation gradient as a case study and evaluated the ability of our approach to model species richness and phylogenetic diversity of communities. Results S-SDMs reproduced the observed decrease in phylogenetic diversity and species richness with elevation, syndromes of environmental filtering. The prediction accuracy of community properties vary along environmental gradient: variability in predictions of species richness was higher at low elevation, while it was lower for phylogenetic diversity. Our approach allowed mapping the variability in species richness and phylogenetic diversity projections. Main conclusion Using our probabilistic approach to process species distribution models outputs to reconstruct communities furnishes an improved picture of the range of possible assemblage realisations under similar environmental conditions given stochastic processes and help inform manager of the uncertainty in the modelling results