981 resultados para SPACE-TELESCOPE OBSERVATIONS
Resumo:
We report the discovery of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 +/- 5 AU (HD 1160 B) and 533 +/- 25 AU (HD 1160 C) by the Gemini NICI Planet-Finding Campaign. Very Large Telescope images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50(-40)(+50) Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 +/- 0.5 star with an estimated mass of 0.22(-0.04)(+0.03) M-circle dot, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33(-9)(+12) M-Jup. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass companion were HD 1160 A to be slightly less massive than the Sun.
Resumo:
The existence of inhomogeneities in the observed Universe modifies the distance-redshift relations thereby affecting the results of cosmological tests in comparison to the ones derived assuming spatially uniform models. By modeling the inhomogeneities through a Zeldovich-Kantowski-Dyer-Roeder approach which is phenomenologically characterized by a smoothness parameter alpha, we rediscuss the constraints on the cosmic parameters based on type Ia supernovae (SNe Ia) and gamma-ray bursts (GRBs) data. The present analysis is restricted to a flat Lambda CDM model with the reasonable assumption that Lambda does not clump. A chi(2) analysis using 557 SNe Ia data from the Union2 compilation data (R. Amanullah et al., Astrophys. J. 716, 712 (2010).) constrains the pair of parameters (Omega(m), alpha) to Omega(m) = 0.27(-0.03)(+0.08) (2 sigma) and alpha >= 0.25. A similar analysis based only on 59 Hymnium GRBs (H. Wei, J. Cosmol. Astropart. Phys. 08 (2010) 020.) constrains the matter density parameter to be Omega(m) = 0.35(-0.24)(+0.62) (2 sigma) while all values for the smoothness parameter are allowed. By performing a joint analysis, it is found that Omega(m) = 0.27(-0.06)(+0.06) and alpha >= 0.52. As a general result, although considering that current GRB data alone cannot constrain the smoothness alpha parameter, our analysis provides an interesting cosmological probe for dark energy even in the presence of inhomogeneities.
Resumo:
New Cosmic Origins Spectrograph (COS) observing modes have extended the Hubble Space Telescope's spectral range to wavelengths between 900-1150 Å. However, the G140L/1280 and the Cycle 19 available G130M central wavelengths (1055 and 1096) that sample below 1150 Å were only available at focus positions which provided low-resolution (R<3,000). For HST Cycle 20, we introduced a new G130M/1222 central wavelength that covers 1065-1365 Å with R>10,000 everywhere, but optimized for 15000 from 1080-1200 Å. This mode places geo-coronal Lyα between the COS FUV detector segments to minimize detector gain sag. Also for Cycle 20, the resolution of the G130M/1055 and 1096 modes will be increased by a factor of 3-4 by optimizing the focus positions for these modes. This will give HST approximately the effective area of FUSE over the FUSE bandpass at 10,000. Here we present the current calibration status of the COS G130M/1055, 1096, and 1222 central wavelength settings at the original and second FUV lifetime positions with an emphasis on observing over the "Lyman UV", or "LUV", 912-1216 Å.
Resumo:
We describe the planning, implementation, and initial results of the first planned move of the default position of spectra on the Hubble Space Telescope's Cosmic Origins Spectrograph (COS) Far Ultraviolet (FUV) cross-delay line detector. This was motivated by the limited amount of charge that can be extracted from the microchannel plate due to gain sag at any one position. Operations at a new location began on July 23, 2012, with a shift of the spectrum by +3.5"(corresponding to ~ 41 pixels or ~ 1 mm) in a direction orthogonal to the spectral dispersion. Operation at this second "lifetime position" allows for spectra to be collected which are not affected by detector artifacts and loss of sensitivity due to gain sag. We discuss programs designed to enable operations at the new lifetime position; these include determinations of operational high voltage, measuring walk corrections and focus, confirming spectrum placement and aperture centering, and target acquisition performance. We also present results related to calibration of the new lifetime position, including measurements of spectral resolution and wavelength calibration, flux and flat field calibration, carryover of time-dependent sensitivity monitoring, and operations with the Bright Object Aperture (BOA).
Resumo:
Is numerical mimicry a third way of establishing truth? Kevin Heng received his M.S. and Ph.D. in astrophysics from the Joint Institute for Laboratory Astrophysics (JILA) and the University of Colorado at Boulder. He joined the Institute for Advanced Study in Princeton from 2007 to 2010, first as a Member and later as the Frank & Peggy Taplin Member. From 2010 to 2012 he was a Zwicky Prize Fellow at ETH Z¨urich (the Swiss Federal Institute of Technology). In 2013, he joined the Center for Space and Habitability (CSH) at the University of Bern, Switzerland, as a tenure-track assistant professor, where he leads the Exoplanets and Exoclimes Group. He has worked on, and maintains, a broad range of interests in astrophysics: shocks, extrasolar asteroid belts, planet formation, fluid dynamics, brown dwarfs and exoplanets. He coordinates the Exoclimes Simulation Platform (ESP), an open-source set of theoretical tools designed for studying the basic physics and chemistry of exoplanetary atmospheres and climates (www.exoclime.org). He is involved in the CHEOPS (Characterizing Exoplanet Satellite) space telescope, a mission approved by the European Space Agency (ESA) and led by Switzerland. He spends a fair amount of time humbly learning the lessons gleaned from studying the Earth and Solar System planets, as related to him by atmospheric, climate and planetary scientists. He received a Sigma Xi Grant-in-Aid of Research in 2006
Resumo:
The history and the ultimate future fate of the universe as a whole depend on how much the expansion of the universe is decelerated by its own mass. In particular, whether the expansion of the universe will ever come to a halt can be determined from the past expansion. However, the mass density in the universe does not only govern the expansion history and the curvature of space, but in parallel also regulates the growth of hierarchical structure, including the collapse of material into the dense, virialized regions that we identify with galaxies. Hence, the formation of galaxies and their clustered distribution in space depend not only on the detailed physics of how stars are formed but also on the overall structure of the universe. Recent observational efforts, fueled by new large, ground-based telescopes and the Hubble Space Telescope, combined with theoretical progress, have brought us to the verge of determining the expansion history of the universe and space curvature from direct observation and to linking this to the formation history of galaxies.
Resumo:
Establishing accurate extragalactic distances has provided an immense challenge to astronomers since the 1920s. The situation has improved dramatically as better detectors have become available, and as several new, promising techniques have been developed. For the first time in the history of this difficult field, relative distances to galaxies are being compared on a case-by-case basis, and their quantitative agreement is being established. New instrumentation, the development of new techniques for measuring distances, and recent measurements with the Hubble Space telescope all have resulted in new distances to galaxies with precision at the ±5–20% level. The current statistical uncertainty in some methods for measuring H0 is now only a few percent; with systematic errors, the total uncertainty is approaching ±10%. Hence, the historical factor-of-two uncertainty in the value of the H0 is now behind us.
Resumo:
We combine high-resolution Hubble Space Telescope/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (M_*> 10^10 M_☉) galaxies at redshifts z = 1.4-3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates (SFRs) qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5-3. At z≲2, cSFGs present SFR = 100-200 M_☉ yr^–1, yet their specific star formation rates (sSFR ~ 10^–9 yr^–1) are typically half that of other massive SFGs at the same epoch, and host X-ray luminous active galactic nuclei (AGNs) 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2-3 and fade to cQGs down to z ~ 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary tracks of QG formation: an early (z≲2), formation path of rapidly quenched cSFGs fading into cQGs that later enlarge within the quiescent phase, and a late-arrival (z≳2) path in which larger SFGs form extended QGs without passing through a compact state.
Resumo:
We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H I brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey ( HIPASS). The selection of the brightest sources is based on their H I peak flux density (S-peak greater than or similar to116 mJy) as measured from the spatially integrated HIPASS spectrum. The derived H I masses range from similar to10(7) to 4 x 10(10) M-.. While the BGC ( z< 0.03) is complete in S-peak, only a subset of &SIM;500 sources can be considered complete in integrated H I flux density (F-H I &GSIM;25 Jy km s(-1)). The HIPASS BGC contains a total of 158 new redshifts. These belong to 91 new sources for which no optical or infrared counterparts have previously been cataloged, an additional 51 galaxies for which no redshifts were previously known, and 16 galaxies for which the cataloged optical velocities disagree. Of the 91 newly cataloged BGC sources, only four are definite H I clouds: while three are likely Magellanic debris with velocities around 400 km s(-1), one is a tidal cloud associated with the NGC 2442 galaxy group. The remaining 87 new BGC sources, the majority of which lie in the zone of avoidance, appear to be galaxies. We identified optical counterparts to all but one of the 30 new galaxies at Galactic latitudes > 10degrees. Therefore, the BGC yields no evidence for a population of free-floating'' intergalactic H I clouds without associated optical counterparts. HIPASS provides a clear view of the local large-scale structure. The dominant features in the sky distribution of the BGC are the Supergalactic Plane and the Local Void. In addition, one can clearly see the Centaurus Wall, which connects via the Hydra and Antlia Clusters to the Puppis Filament. Some previously hardly noticable galaxy groups stand out quite distinctly in the H I sky distribution. Several new structures, including some not behind the Milky Way, are seen for the first time.
Resumo:
To maximise data output from single-shot astronomical images, the rejection of cosmic rays is important. We present the results of a benchmark trial comparing various cosmic ray rejection algorithms. The procedures assess relative performances and characteristics of the processes in cosmic ray detection, rates of false detections of true objects, and the quality of image cleaning and reconstruction. The cosmic ray rejection algorithms developed by Rhoads (2000, PASP, 112, 703), van Dokkum (2001, PASP, 113, 1420), Pych (2004, PASP, 116, 148), and the IRAF task xzap by Dickinson are tested using both simulated and real data. It is found that detection efficiency is independent of the density of cosmic rays in an image, being more strongly affected by the density of real objects in the field. As expected, spurious detections and alterations to real data in the cleaning process are also significantly increased by high object densities. We find the Rhoads' linear filtering method to produce the best performance in the detection of cosmic ray events; however, the popular van Dokkum algorithm exhibits the highest overall performance in terms of detection and cleaning.
Resumo:
Using imaging from the Hubble Space Telescope, we derive surface brightness profiles for ultracompact dwarfs in the Fornax Cluster and for the nuclei of dwarf elliptical galaxies in the Virgo Cluster. Ultracompact dwarfs are more extended and have higher surface brightnesses than typical dwarf nuclei, while the luminosities, colors, and sizes of the nuclei are closer to those of Galactic globular clusters. This calls into question the production of ultracompact dwarfs via threshing, whereby the lower surface brightness envelope of a dwarf elliptical galaxy is removed by tidal processes, leaving behind a bare nucleus. Threshing may still be a viable model if the relatively bright Fornax ultracompact dwarfs considered here are descended from dwarf elliptical galaxies whose nuclei are at the upper end of their luminosity and size distributions.
Resumo:
We present a study of the star-forming properties of a stellar mass-selected sample of galaxies in the GOODS (Great Observatories Origins Deep Survey) NICMOS Survey (GNS), based on deep Hubble Space Telescope (HST) imaging of the GOODS North and South fields. Using a stellar mass-selected sample, combined with HST/ACS and Spitzer data to measure both ultraviolet (UV) and infrared-derived star formation rates (SFRs), we investigate the star forming properties of a complete sample of ∼1300 galaxies down to log M_*= 9.5 at redshifts 1.5 < z < 3. Eight per cent of the sample is made up of massive galaxies with M_*≥ 10^11 M_⊙. We derive optical colours, dust extinctions and UV and infrared SFR to determine how the SFR changes as a function of both stellar mass and time. Our results show that SFR increases at higher stellar mass such that massive galaxies nearly double their stellar mass from star formation alone over the redshift range studied, but the average value of SFR for a given stellar mass remains constant over this ∼2 Gyr period. Furthermore, we find no strong evolution in the SFR for our sample as a function of mass over our redshift range of interest; in particular we do not find a decline in the SFR among massive galaxies, as is seen at z < 1. The most massive galaxies in our sample (log M_*≥ 11) have high average SFRs with values SFR_UV, corr= 103 ± 75 M_⊙ yr^−1, and yet exhibit red rest-frame (U−B) colours at all redshifts. We conclude that the majority of these red high-redshift massive galaxies are red due to dust extinction. We find that A_2800 increases with stellar mass, and show that between 45 and 85 per cent of massive galaxies harbour dusty star formation. These results show that even just a few Gyr after the first galaxies appear, there are strong relations between the global physical properties of galaxies, driven by stellar mass or another underlying feature of galaxies strongly related to the stellar mass.
Resumo:
We present a primary transit observation for the ultra-hot (T eq ~ 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12–1.64 μm wavelength range. The 1.4 μm water absorption band is detected at high confidence (5.4σ) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12–1.3 μm wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
Resumo:
We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very Large Telescope (VLT) FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411-810nm. The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10nm on a V = 12.1 magnitude star. We detect the sodium absorption feature (3.2-sigma) and find evidence for potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy, strengthening the interpretation of WASP-39b having a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, obtaining HST-quality light curves from the ground.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08