993 resultados para SOUTHERN-CALIFORNIA
Resumo:
The compositions, mineralogies, and textures of gabbros recovered in polymict breccias in Hole 453 indicate that they are the cumulus assemblages of calc-alkalic crystal fractional on that occurred beneath the West Mariana Ridge. They are among a class of gabbros known only from other calc-alkalic associations (e.g., the Lesser Antilles and the Peninsular Ranges batholith of Southern California) and differ from gabbros of stratiform complexes, ophiolites, and the ocean crust. Particularly abundant in the Hole 453 breccias are olivine-bearing gabbros with extremely calcic Plagioclase (An94-97) but with fairly iron-rich olivines (Fo76-77). Other gabbros contain biotite and amphibole and occur in breccias with fairly high-grade greenschist facies (amphibole-chlorite-stilpnomelane) metabasalts. One unusual gabbro has experienced almost complete subsolidus recrystallization to an assemblage of aluminous magnesio-hornblende, anorthite, and green hercynitic spinel. This reaction, the extremely calcic Plagioclase, the occurrence of biotite and amphibole, and the association with greenschist facies metamorphic rocks suggest that crystallization of the gabbros occurred at elevated P(H2O). Comparisons with other calc-alkalic gabbro suites suggest pressures in excess of 4 kbar (about 12 km depth). The gabbros were exposed by the early stages of opening of the Mariana Trough and imply that considerable uplift may have attended rifting. They were also subjected to hydrothermal alteration after breccia formation, resulting in formation of chlorite, epidote, actinolite, and prehnite. Temperatures of at least 200°C - and probably 350°C - were reached, and most likely could not have been attained without extrusion or intrusion of magmas nearby, even though no such rocks were cored.
Resumo:
Oxygen isotopic (d18O) climatic stratigraphy and radiocarbon chronology, at high resolution, have been used to establish an age model for Ocean Drilling Program Hole 1017E, a continuous 25-m sequence of hemipelagic sediments from the continental slope (956 m water depth), east of Point Arguella, Southern California. The upper part of Hole 1017E from ~33 ka (7.445 mbsf) was dated using 13 calendar-corrected radiocarbon ages of mixed planktonic foraminiferal assemblages. Benthic oxygen isotopic stratigraphy records a continuous 130-k.y. sequence ranging from marine isotope Stage 6 to the present day. The benthic d18O curve, representing the last two interglacial and glacial cycles, closely resembles the well-dated, deep-sea reference sequence, providing a detailed chronologic framework. Sedimentation rates remained relatively constant throughout the sequence at ~18 cm/k.y. and were sufficiently rapid to provide considerable potential for high-resolution paleoceanographic/paleoclimatic investigations. Planktonic foraminiferal oxygen isotopic stratigraphy based on the surface-dwelling form Globigerina bulloides defines an almost complete sequence of interstadial/stadial oscillations (Dansgaard/Oeschger cycles [D/O]). Combined use of radiocarbon chronology, deep-sea oxygen isotopic datums, and visual pattern matching has enabled us to identify the sequence of D/O cycles as described for the Greenland (GRIP2) ice core. This has strengthened the stratigraphic framework for the last 60 k.y. in the sequence as a basis for further paleoenvironmental investigations.
Resumo:
Late Quaternary oxygen (d18O) and carbon (d13C) isotopic records for the benthic foraminifer Uvigerina and the planktonic foraminifer Globigerina bulloides are presented for the upper 20 meters composite depth sediment sequence of Ocean Drilling Program Site 1014, Tanner Basin, in the outer California Borderland province. The benthic oxygen isotopic record documents a continuous >160-k.y. sequence from marine isotope Stage (MIS) 6 to the present day. The record closely resembles other late Quaternary North Pacific benthic isotope records, as well as the well-dated deep-sea sequence (SPECMAP), and thus provides a detailed chronologic framework. Site 1014 provides a useful record of the California response to climate change as it enters the southern California Border-land. Sedimentation rates are relatively constant and high (~11.5 cm/k.y. ). The planktonic foraminiferal record is well pre-served except during marine isotope Substages 5b and 5d, when normally high G. bulloides abundance is strongly diminished as a result of dissolution. The planktonic oxygen isotopic shift of ~3 per mil between the last glacial maximum and the Holocene suggests a surface water temperature shift of <7°C, similar to estimates from Hole 893A (Leg 146) to the north. Unlike Santa Barbara Basin, G. bulloides d18O values during the last interglacial (MIS 5) at Site 1014 were significantly higher than during the Holocene. In particular, marine isotope Substage 5e (Eemian) was ~0.8 per mil higher. This is unlikely to reflect a cooler Eemian but is instead the result of preferential dissolution of thin-shelled (low d18O) specimens during this interval. In this mid-depth basin, a large benthic d18O shift during Termination I suggests dramatic temperature and salinity changes in response to switches in the source of North Pacific Intermediate Water. Although d13C values of the planktonic foraminifer G. bulloides are in disequilibria with seawater and hence interpretations are limited, the G. bulloides record exhibits several negative d13C excursions found at other sites in the region (Sites 1017 and 893). This indicates a response of G. bulloides d13C to regional surface water processes along the southern California margin. A general increase in benthic carbon isotopic values (-1.75 per mil to -0.75 per mil) in Tanner Basin during the last 200 k.y. is overprinted with smaller fluctuations correlated with climate change. The coolest intervals during the last glacial maximum (MISs 2 and 4) exhibit lower benthic d13C values, which correlate with global 13C shifts. The opposite relationship is exhibited during the last interglacial before 85 ka, when lower benthic d13C values are associated with warmer intervals (marine isotope Substages 5c and 5e) of the last interglacial. These time intervals were also marked by decreased intermediate water ventilation. Increased dissolution and organic accumulation during Substages 5b and 5d are anticorrelated with the benthic d13C record. These results suggest that a delicate balance in intermediate water d13C has existed between the relative influences of global 13C and regional ventilation changes at the 1165-m water depth of Site 1014.
Resumo:
To address growing concern over the effects of fisheries non-target catch on elasmobranchs worldwide, the accurate reporting of elasmobranch catch is essential. This requires data on a combination of measures, including reported landings, retained and discarded non-target catch, and post-discard survival. Identification of the factors influencing discard vs. retention is needed to improve catch estimates and to determine wasteful fishing practices. To do this we compared retention rates of elasmobranch non-target catch in a broad subset of fisheries throughout the world by taxon, fishing country, and gear. A regression tree and random forest analysis indicated that taxon was the most important determinant of retention in this dataset, but all three factors together explained 59% of the variance. Estimates of total elasmobranch removals were calculated by dividing the FAO global elasmobranch landings by average retention rates and suggest that total elasmobranch removals may exceed FAO reported landings by as much as 400%. This analysis is the first effort to directly characterize global drivers of discards for elasmobranch non-target catch. Our results highlight the importance of accurate quantification of retention and discard rates to improve assessments of the potential impacts of fisheries on these species.
Resumo:
The episodic occurrence of debris flow events in response to stochastic precipitation and wildfire events makes hazard prediction challenging. Previous work has shown that frequency-magnitude distributions of non-fire-related debris flows follow a power law, but less is known about the distribution of post-fire debris flows. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and cumulative distribution functions to compare volumes of post-fire debris flows to non-fire-related debris flows. Due to the large number of events required to parameterize frequency-magnitude distributions, and the relatively small number of post-fire event magnitudes recorded in the literature, we collected data on 73 recent post-fire events in the field. The resulting catalog of 988 debris flow events is presented as an appendix to this article. We found that the empirical cumulative distribution function of post-fire debris flow volumes is composed of smaller events than that of non-fire-related debris flows. In addition, the slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, evidence that differences in the post-fire environment tend to produce a higher proportion of small events. We propose two possible explanations: 1) post-fire events occur on shorter return intervals than debris flows in similar basins that do not experience fire, causing their distribution to shift toward smaller events due to limitations in sediment supply, or 2) fire causes changes in resisting and driving forces on a package of sediment, such that a smaller perturbation of the system is required in order for a debris flow to occur, resulting in smaller event volumes.
Resumo:
Authigenic carbonates, principally calcium-rich dolomites, with extremely variable isotopic compositions were recovered in organic-rich marine sediments during Leg 63 drilling off southern California and Baja California. These carbonates occur as thin layers in fine-grained, diatomaceous sediments and siliceous rocks, mostly deposited during the Neogene. A combination of textural, geochemical, and isotopic evidence indicates these dolomites formed as cements and precipitates in shallow subsurface zones of high alkalinity spawned by abundant CO2 and methane production during progressive microbial decay of organic matter. Depths and approximate temperatures of formation estimated from oxygen isotopes are 87 to 658 meters and 10°C to 50°C, respectively. Within any sedimentary section, dolomites may form simultaneously at several depths or at different times within the same interval. Highly variable carbon isotopes (-30 to +16 per mil) reflect the isotopic reservoir in which the carbonates formed. Oxidation of organic matter through microbial reduction of sulfate at shallow depths favors light-carbon carbonates such as those at Sites 468 and 471; heavy-carbon carbonates at Site 467 most likely formed below this zone where HC**12O3**- is preferentially removed by reduction of CO2 to methane during methanogenesis. An important controlling factor is the sedimentation rate, which dictates both the preservation of organic matter on the sea floor and depth distribution of subsurface zones of organic-matter decay.