942 resultados para SOMATOSENSORY-EVOKED-POTENTIALS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Action representations can interact with object recognition processes. For example, so-called mirror neurons respond both when performing an action and when seeing or hearing such actions. Investigations of auditory object processing have largely focused on categorical discrimination, which begins within the initial 100 ms post-stimulus onset and subsequently engages distinct cortical networks. Whether action representations themselves contribute to auditory object recognition and the precise kinds of actions recruiting the auditory-visual mirror neuron system remain poorly understood. We applied electrical neuroimaging analyses to auditory evoked potentials (AEPs) in response to sounds of man-made objects that were further subdivided between sounds conveying a socio-functional context and typically cuing a responsive action by the listener (e.g. a ringing telephone) and those that are not linked to such a context and do not typically elicit responsive actions (e.g. notes on a piano). This distinction was validated psychophysically by a separate cohort of listeners. Beginning approximately 300 ms, responses to such context-related sounds significantly differed from context-free sounds both in the strength and topography of the electric field. This latency is >200 ms subsequent to general categorical discrimination. Additionally, such topographic differences indicate that sounds of different action sub-types engage distinct configurations of intracranial generators. Statistical analysis of source estimations identified differential activity within premotor and inferior (pre)frontal regions (Brodmann's areas (BA) 6, BA8, and BA45/46/47) in response to sounds of actions typically cuing a responsive action. We discuss our results in terms of a spatio-temporal model of auditory object processing and the interplay between semantic and action representations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se realizó un estudio de seguimiento de un año de duración a un gmpo de 50 pacientes alcohólicos crónicos en régimen de abstinencia completa. Se practicaron tres tipos de potenciales evocados, auditivos de tronco cerebral (PEATC), visuales en la modalidad de pattern (PEVP) y auditivos de latencia larga (LAEPs). Nuestro objetivo fue evaluar la posible reversibilidad de las alteraciones provocadas por el consumo crónico de alcohol en el sistema nervioso. Al mes de abstinencia los alcohólicos presentaron alteraciones en diversos parametros de PES. Al año de abstinencia se mantuvieron alterados P3 y NI-P2 de LAEPs, y 111-V y I-V de PEATC, mientrasse normalizaron PI00 de PEVP y N2 de LAEPs. Durante este primer aiio se produjo una recuperación parcial de las alteraciones funcionales provocadas por el consumo crónico de alcohol, dependiendo el grado de recuperación del sistema neural explorado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coma after cardiac arrest (CA) is an important cause of admission to the ICU. Prognosis of post-CA coma has significantly improved over the past decade, particularly because of aggressive postresuscitation care and the use of therapeutic targeted temperature management (TTM). TTM and sedatives used to maintain controlled cooling might delay neurologic reflexes and reduce the accuracy of clinical examination. In the early ICU phase, patients' good recovery may often be indistinguishable (based on neurologic examination alone) from patients who eventually will have a poor prognosis. Prognostication of post-CA coma, therefore, has evolved toward a multimodal approach that combines neurologic examination with EEG and evoked potentials. Blood biomarkers (eg, neuron-specific enolase [NSE] and soluble 100-β protein) are useful complements for coma prognostication; however, results vary among commercial laboratory assays, and applying one single cutoff level (eg, > 33 μg/L for NSE) for poor prognostication is not recommended. Neuroimaging, mainly diffusion MRI, is emerging as a promising tool for prognostication, but its precise role needs further study before it can be widely used. This multimodal approach might reduce false-positive rates of poor prognosis, thereby providing optimal prognostication of comatose CA survivors. The aim of this review is to summarize studies and the principal tools presently available for outcome prediction and to describe a practical approach to the multimodal prognostication of coma after CA, with a particular focus on neuromonitoring tools. We also propose an algorithm for the optimal use of such multimodal tools during the early ICU phase of post-CA coma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes methods to analyze the brain's electric fields recorded with multichannel Electroencephalogram (EEG) and demonstrates their implementation in the software CARTOOL. It focuses on the analysis of the spatial properties of these fields and on quantitative assessment of changes of field topographies across time, experimental conditions, or populations. Topographic analyses are advantageous because they are reference independents and thus render statistically unambiguous results. Neurophysiologically, differences in topography directly indicate changes in the configuration of the active neuronal sources in the brain. We describe global measures of field strength and field similarities, temporal segmentation based on topographic variations, topographic analysis in the frequency domain, topographic statistical analysis, and source imaging based on distributed inverse solutions. All analysis methods are implemented in a freely available academic software package called CARTOOL. Besides providing these analysis tools, CARTOOL is particularly designed to visualize the data and the analysis results using 3-dimensional display routines that allow rapid manipulation and animation of 3D images. CARTOOL therefore is a helpful tool for researchers as well as for clinicians to interpret multichannel EEG and evoked potentials in a global, comprehensive, and unambiguous way.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RÉSUMÉ Introduction L'effet des agents myorelaxants ainsi que des anticholinestérases sur la profondeur d'anesthésie a été étudié avec des résultats contradictoires. C'est pourquoi nous avons évalué l'effet de l'atracurium et de la néostigmine sur le BIS (bispectral index) ainsi que sur les potentiels auditives évoqués (middle-latency auditory evoked potentials, A-Line® autoregressive index [AAI]). Méthodes Après avoir obtenu l'accord du comité d'éthique local, nous avons étudié 40 patients ayant donné leur consentement écrit, ASA I-II, âgé de 18-69 ans. L'anesthésie générale a consisté en anesthésie intra-veineuse à objectif de concentration avec du propofol et du remifentanil. La fonction de la jonction neuromusculaire était monitorée en continu au moyen d'un électromyographe. Le BIS et l'AAI ont été enregistrés en continu. Après avoir atteint des valeurs stables au niveau du BIS, les patients ont été attribués à deux groupes par randomisation. Les patients du groupe 1 ont reçu 0.4 mg kg-1 d'atracurium et 5 minutes plus tard le même volume de NaCI 0.9%, dans le groupe 2 la séquence d'injection était inversée, le NaCI 0.9% en premier et l'atracurium en deuxième. Au moment où le premier « twitch » d'un train de quatre atteignait 10% de l'intensité avant la relaxation, les patients ont été randomisés une deuxième fois. Les patients du groupe N ont reçu 0.04 mg kg-1 de néostigmine et 0.01 rn9 kg-1 de glycopyrrolate alors que le groupe contrôle (G) ne recevait que 0.01 mg kg-] de glycopyrrolate. Résultats : L 'injection d'atracurium ou de NaCI 0.9% n'a pas eu d'effet sur le BIS ou l'AAI. Après l'injection de néostigmine avec glycopyrrolate, le BIS et I `AAI a augmenté de manière significative (changement maximal moyen du BIS 7.1 ± 7.5, P< 0.001, de l'AAI 9.7 ± 10.5, P< 0.001). Suite à l'injection de glycopyrrolate seule, le BIS et l'AAI a augmenté également (changement maximal moyen du BIS 2.2 ± 3.4, P< 0.008, de l'AAI 3.5 ± 5.7, P< 0.012), mais cette augmentation était significativement moins importante que dans le groupe N (P< 0.012 pour le BIS, P< 0.027 pour l'AAI). Conclusion Ces résultats laissent supposer que la néostigmine peut altérer la profondeur de l'anesthésie. La diminution de la profondeur d'anesthésie enregistrée par le BIS et l'AAI correspond probablement à une réapparition brusque d'une stimulation centrale liée à la proprioception. Au contraire, lors de la curarisation, le tonus musculaire diminue de manière beaucoup plus progressive, pouvant ainsi expliquer l'absence d'effet sur la profondeur d'anesthésie. ABSTRACT Background. Conflicting effects of neuromuscular blocking drugs and anticholinesterases on depth of anaesthesia have been reported. Therefore we evaluated the effect of atracurium and neostigmine on bispectral index (BIS) and middle-latency auditory evoked potentials (AAI). Methods. We studied 40 patients (ASA I-II) aged 18-69 yr. General anaesthesia consisted of propofol and remifentanil by target-controlled infusion and neuromuscular function was monitored by electromyography. When BIS reached stable values, patients were randomly assigned to one of two groups. Group I received atracurium 0.4 mg kg-1 and, 5 min later, the same volume of NaCl 0.9%; group 2 received saline first and then atracurium. When the first twitch of a train of four reached 10% of control intensity, patients were again randomized: one group (N) received neostigmine 0.04 mg kg-1 and glycopyrrolate 0.01 mg kg-1, and the control group (G) received only glycopyrrolate. Results. Injection of atracurium or NaCl 0.9% had no effect on BIS or AAI. After neostigmine¬glycopyrrolate, BIS and AAI increased significantly (mean maximal change of BIS 7.1 [SD 7.5], P<0.001; mean maximal change of AAI 9.7 [10.5], P<0.001). When glycopyrrolate was injected alone BIS and AAI also increased (mean maximal change of BIS 2.2 [3.4], P=0.008; mean maximal change of AAI 3.5 [5.7], P=0.012), but this increase was significantly less than in group N (P=0.012 for BIS; P=0.027 for AAI). Conclusion. These data suggest that neostigmine alters the state of propofol-remifentanil anaesthesia and may enhance recovery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

STUDY DESIGN: Prospective neurophysiological study. OBJECTIVE: To identify and quantify the neurophysiological effects of interspinous distraction during spine surgery for lumbar spinal stenosis (LSS). SUMMARY OF BACKGROUND DATA: Interspinous devices have been introduced as an alternative treatment of LSS in selected patients aiming at obtaining indirect decompression. Nevertheless, there is no data on the immediate neurophysiological effect of distraction. METHODS: Thirty patients with LSS undergoing decompression (14 at single level, 16 at multiple levels) were enrolled, resulting in a total of 48 levels to be analyzed. Before decompression, calibrated incremental distraction simulating interspinous device implantation of 8, 10, 12, 14, and 16 mm was performed. Intraoperative motor evoked potentials were acquired before any distraction, during distraction at each incremental value and after bilateral decompression. We evaluated relative changes of motor evoked potentials normalized to hand muscles and related them to the number of affected levels, LSS radiological severity based on the A to D grading, lordosis, and disc height. RESULTS: For single-level disease, 8-mm distraction and open decompression yielded similar improvement in motor evoked potentials not only in levels with morphological grades A or B, but also in levels with morphological grades C or D (i.e., severe or extreme stenosis) (P = 0.32). In contrast, distraction superior to 8 mm was less effective (P ≤ 0.05). In multiple-level stenosis, decompression was significantly more effective than any degree of distraction (P < 0.001). No correlation of those results to disc height or lordosis was observed. Using χ trend test to analyze the effect of distraction, a linear trend favoring moderate over severe stenotic morphology was observed (P = 0.0349). CONCLUSION: Interspinous distraction of 8 mm is sufficient to replicate electrophysiological improvements obtained during full decompression even in severe single-level stenosis but not in multilevel disease. Interspinous distraction has therefore an immediately measurable neurophysiological effect. Level of Evidence: 4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Glutathione (GSH) dysregulation at the gene, protein and functional levels observed in schizophrenia patients, and schizophrenia-like anomalies in GSH deficit experimental models, suggest that genetic glutathione synthesis impairments represent one major risk factor for the disease (Do et al., 2009). In a randomized, double blind, placebo controlled, add-on clinical trial of 140 patients, the GSH precursor N-Acetyl-Cysteine (NAC, 2 g/day, 6 months) significantly improved the negative symptoms and reduced side-effects due to antipsychotics (Berk et al., 2008). In a subset of patients (n=7), NAC (2 g/day, 2 months, cross-over design) also improved auditory evoked potentials, the NMDAdependent mismatch negativity (Lavoie et al, 2008). Methods: To determine whether increased GSH levels would modulate the topography of functional brain connectivity, we applied a multivariate phase synchronization (MPS) estimator (Knyazeva et al, 2008) to dense-array EEGs recorded during rest with eyes closed at the protocol onset, the point of crossover, and at its end. Phase synchronization phenomena are appealing because they can be associated to synchronized phases while the amplitudes stay uncorrelated. MPS measures the degree of interactions among the recorded neuronal oscillators by quantifiying to what extent they behave like a macro-oscillator (i.e. the oscillators are phase synchronous). To assess the whole-head synchronization topography, we computed the MPS sensor-wise over the cluster of locations defined by the sensor itself and he surrounding ones belonging to its second-order neighborhood (Carmeli et al, 2005). Such a cluster spans about 12 cm on average. Abstracts 245 Results: The whole-head imaging revealed a specific synchronization landscape in NAC compared to placebo condition. In particular, NAC increased MPS over frontal and left temporal regions in a frequency-specific manner. Importantly, the topography and direction of MPS changes were similar and robust in all 7 patients. Moreover, these changes correlated with the changes in the Liddle's score of disorganization (Liddle, 1987) thus linking EEG synchronization to the improvement of clinical picture. Discussion: The data suggest an important pathway towards new therapeutic strategies that target GSH dysregulation in schizophrenia. They also show the utility of MPS mapping as a marker of treatment efficacy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se presentan diversas evidencias empíricas acerca de las relaciones entre el fenómeno del "Aumenting-Reducing" (Buschbaum, 1971) y el rasgo temperamental "Búsqueda de Sensaciones" (Z uckerman, M. 1979). Participaron 19 sujetos en dos grupos con puntuaciones extremas en el "Cuestionario de Zntereses y Preferencias" (Forma V) de M. Zuckerman (1978) a los que se registró el componente NI-PI del Potencial Evocado Cerebral Auditivo provocado por tres intensidades de estimulacidn acústica. Los resultados obtenidos muestran que la amplitud del componente NI-PI no presenta el patrón de incremento de su amplitud, en función de la intensidad de la estimulación, en el grupo de sujetos de puntuacidn baja en el cuestionario. Estos resultados nos sugieren la existencia de una relación sistemática entre las Diferencias Individuales observadas en el fenómeno de "Aumenting-Reducing" y la variabilidad interindividual del rasgo del temperamento denominado "Búsqueda de Sensaciones".

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To report a case of clinical and electrophysiological recovery in Leber hereditary optic neuropathy (LHON) with G3460A Mutation. A 10-year-old boy with a three-month history of painless bilateral sequential visual loss upon presentation underwent visual acuity (diminished), anterior and posterior segment examination (normal), fluorescein angiography (normal), Goldman kinetic perimetry (bilateral central scotomata), genetic (a point G3460A mutation) and electrophysiological investigation (undetectable pattern visual evoked potentials (VEP); low amplitude, broadened and reduced flash VEPs and loss of the N95 component in the pattern electroretinograms). Diagnosis of LHON was made. Eighteen months later vision and electrophysiological tests results began spontaneously improving. Kinetic perimetry revealed reduced density and size of scotomata. Two years later, there had been further electrophysiological improvement. This report describes both clinical and electrophysiological improvement in LHON with G3460A mutation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although autologous nerve graft is still the first choice strategy in nerve reconstruction, it has the severe disadvantage of the sacrifice of a functional nerve. Cell transplantation in a bioartificial conduit is an alternative strategy to improve nerve regeneration. Nerve fibrin conduits were seeded with various cell types: primary Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC). Two further control groups were fibrin conduits without cells and autografts. Conduits were used to bridge a 1 cm rat sciatic nerve gap in a long term experiment (16 weeks). Functional and morphological properties of regenerated nerves were investigated. A reduction in muscle atrophy was observed in the autograft and in all cell-seeded groups, when compared with the empty fibrin conduits. SC showed significant improvement in axon myelination and average fiber diameter of the regenerated nerves. dASC were the most effective cell population in terms of improvement of axonal and fiber diameter, evoked potentials at the level of the gastrocnemius muscle and regeneration of motoneurons, similar to the autografts. Given these results and other advantages of adipose derived stem cells such as ease of harvest and relative abundance, dASC could be a clinically translatable route towards new methods to enhance peripheral nerve repair.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts x 10 repetitions, 10 sessions, 4 wk) at 70-80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater (P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (M(max)), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND CONTEXT: Kyphotic deformities with sagittal imbalance of the spine can be treated with spinal osteotomies. Those procedures are known to have a high incidence of neurological complications, in particular at the thoracic level. Motor evoked potentials (MEPs) have been widely used in helping to avoid major neurological deficits postoperatively. Previous reports have shown that a significant proportion of such cases present with important transcranial MEP (Tc-MEP) changes during surgery with some of them being predictive of postoperative deficits. PURPOSE: Our aim was to study Tc-MEP changes in a consecutive series of patients and correlate them with clinical parameters and radiological changes. STUDY DESIGN/SETTING: Retrospective case notes study from a prospective patient register. PATIENT SAMPLE: Eighteen patients undergoing posterior shortening osteotomies (nine at thoracic and nine at lumbar levels) for kyphosis of congenital, degenerative, inflammatory, or post-traumatic origin were included. OUTCOME MEASURES: Loss of at least 80% of Tc-MEP signal expressed as the area under the curve percentual change, of at least one muscle. METHODS: We studied the relation between outcome measure (80% Tc-MEP loss in at least one muscle group) and amount of posterior vertebral body shortening as well as angular correction measured on computed tomography scans, occurrence of postoperative deficits, intraoperative blood pressure at the time of the osteotomy, and hemoglobin (Hb) change. RESULTS: All patients showed significant Tc-MEP changes. In particular, greater than 80% MEP loss in at least one muscle group was observed in five of nine patients in the thoracic group and four of nine patients in the lumbar group. No surgical maneuver was undertaken as a result of this loss in an effort to improve motor responses other than verifying the stability of the construct and the extent of the decompression. Four patients developed postoperative deficits of radicular origin, three of them recovering fully at 3 months. No relation was found between intraoperative blood pressure, Hb changes, and Tc-MEP changes. Severity of Tc-MEP loss did not correlate with postoperative deficits. Shortening of more than 10 mm was linked to more severe Tc-MEP changes in the thoracic group. CONCLUSIONS: Transcranial MEP changes during spinal shortening procedures are common and do not appear to predict severe postoperative deficits. Total loss of Tc-MEP (not witnessed in our series) might require a more drastic approach with possible reversal of the correction and wake-up test.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Na(+)-independent alanine-serine-cysteine transporter 1 (Asc-1) is exclusively expressed in neuronal structures throughout the central nervous system (CNS). Asc-1 transports small neutral amino acids with high affinity especially for D-serine and glycine (K(i): 8-12 microM), two endogenous glutamate co-agonists that activate N-methyl-D-aspartate (NMDA) receptors through interacting with the strychnine-insensitive glycine binding-site. By regulating D-serine (and possibly glycine) levels in the synaptic cleft, Asc-1 may play an important role in controlling neuronal excitability. We generated asc-1 gene knockout (asc-1(-/-)) mice to test this hypothesis. Behavioral phenotyping combined with electroencephalogram (EEG) recordings revealed that asc-1(-/-) mice developed tremors, ataxia, and seizures that resulted in early postnatal death. Both tremors and seizures were reduced by the NMDA receptor antagonist MK-801. Extracellular recordings from asc-1(-/-) brain slices indicated that the spontaneous seizure activity did not originate in the hippocampus, although, in this region, a relative increase in evoked synaptic responses was observed under nominal Mg(2+)-free conditions. Taken together with the known neurochemistry and neuronal distribution of the Asc-1 transporter, these results indicate that the mechanism underlying the behavioral hyperexcitability in mutant mice is likely due to overactivation of NMDA receptors, presumably resulting from elevated extracellular D-serine. Our study provides the first evidence to support the notion that Asc-1 transporter plays a critical role in regulating neuronal excitability, and indicate that the transporter is vital for normal CNS function and essential to postnatal survival of mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes.