935 resultados para SMALL NUCLEAR-RNA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transgenic engineering of plants is important in both basic and applied research. However, the expression of a transgene can dwindle over time as the plant's small (s)RNA-guided silencing pathways shut it down. The silencing pathways have evolved as antiviral defence mechanisms, and viruses have co-evolved viral silencing-suppressor proteins (VSPs) to block them. Therefore, VSPs have been routinely used alongside desired transgene constructs to enhance their expression in transient assays. However, constitutive, stable expression of a VSP in a plant usually causes pronounced developmental abnormalities, as their actions interfere with endogenous microRNA-regulated processes, and has largely precluded the use of VSPs as an aid to stable transgene expression. In an attempt to avoid the deleterious effects but obtain the enhancing effect, a number of different VSPs were expressed exclusively in the seeds of Arabidopsis thaliana alongside a three-step transgenic pathway for the synthesis of arachidonic acid (AA), an ω-6 long chain polyunsaturated fatty acid. Results from independent transgenic events, maintained for four generations, showed that the VSP-AA-transformed plants were developmentally normal, apart from minor phenotypes at the cotyledon stage, and could produce 40% more AA than plants transformed with the AA transgene cassette alone. Intriguingly, a geminivirus VSP, V2, was constitutively expressed without causing developmental defects, as it acts on the siRNA amplification step that is not part of the miRNA pathway, and gave strong transgene enhancement. These results demonstrate that VSP expression can be used to protect and enhance stable transgene performance and has significant biotechnological application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The in vitro incorporation of [3H]uridine into RNA and [3H]leucine into protein in slices of porcine thyroid was studied. Thyrotropin (10-500 mU/ml of medium), when added with [3H]uridine, inhibited incorporation into RNA, but as little as 10 mU of thyrotropin per ml stimulated incorporation of [3H]orotic acid into RNA. Uridine kinase (EC 2.7.1.48) was found to be inhibited in slices incubated with thyrotropin whereas UMP 5′ nucleotidase (EC 2.1.3.5) was not. Preincubation of slices with thyrotropin (5-50 mU/ml) led to enhanced incorporation of subsequently added [3H]uridine and [3H]leucine. When slices were preincubated with long-acting thyroid stimulator-IgG (2.5 or 5 mg per ml of medium) incorporation of [3H]uridine and [3H]leucine was similarly enhanced, with the smaller concentration being more effective. Without preincubation these stimulatory effects were mimicked by 1 mM dibutyryl 3′,5′-AMP and, to a lesser extent, 1 mM 3′,5′-AMP. AMP and ATP also stimulated [3H]uridine incorporation in this system but only after more prolonged periods of incubation than were required for the other nucleotides. RNA polymerase (EC 2.7.7.6) activity measured in isolated thyroid nuclei had two components, one Mg2+-stimulated and the other requ ring Mn2+ and high salt content [0.4 M (NH4)2SO4]. These activities, and particularly the former, were enhanced if thyroid slices were incubated with thyrotropin (5-100 mU/ml of medium), 2.5 mg or 5.0 mg of long-acting thyroid stimulator-IgG per ml, or 1 mM dibutyryl 3′,5′-AMP, before isolatior of the nuclei and measurement of enzyme activities; 1 mM AMP, ADP, or 2′,3′-GMP had no influence. Added directly to the nuclei, thyrotropin, long-acting thyroid stimulator-IgG, and dibutyryl 3′,5′-AMP had no effect on RNA polymerase activities. These data are seen as affording evidence for mediation by 3′,5′-AMP of effects of thyrotropin and long-acting thyroid stimulator on thyroid RNA and protein synthesis, at least in part through an indirect stimulation of nuclear RNA polymerase activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pre-mRNA splicing occurs in spliceosomes whose assembly and activation are critical for splice site selection and catalysis. The highly conserved NineTeen complex protein complex stabilizes various snRNA and protein interactions early in the spliceosome assembly pathway. Among several NineTeen complex-associated proteins is the nonessential protein Bud31/Ycr063w, which is also a component of the Cef1p subcomplex. A role for Bud31 in pre-mRNA splicing is implicated by virtue of its association with splicing factors, but its specific functions and spliceosome interactions are uncharacterized. Here, using in vitro splicing assays with extracts from a strain lacking Bud31, we illustrate its role in efficient progression to the first catalytic step and its requirement for the second catalytic step in reactions at higher temperatures. Immunoprecipitation of functional epitope-tagged Bud31 from in vitro reactions showed that its earliest association is with precatalytic B complex and that the interaction continues in catalytically active complexes with stably bound U2, U5, and U6 small nuclear ribonucleoproteins. In complementary experiments, wherein precatalytic spliceosomes are selected from splicing reactions, we detect the occurrence of Bud31. Cross-linking of proteins to pre-mRNAs with a site-specific 4-thio uridine residue at the -3 position of exon 1 was tested in reactions with WT and bud31 null extracts. The data suggest an altered interaction between a similar to 25-kDa protein and this exonic residue of pre-mRNAs in the arrested bud31 null spliceosomes. These results demonstrate the early spliceosomal association of Bud31 and provide plausible functions for this factor in stabilizing protein interactions with the pre-mRNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nucleic acid interaction with nanoscale objects like carbon nanotubes (CNTs) and dendrimers is of fundamental interest because of their potential application in CNT separation, gene therapy and antisense therapy. Combining nucleic acids with CNTs and dendrimers also opens the door towards controllable self-assembly to generate various supra-molecular and nano-structures with desired morphologies. The interaction between these nanoscale objects also serve as a model system for studying DNA compaction, which is a fundamental process in chromatin organization. By using fully atomistic simulations, here we report various aspects of the interactions and binding modes of DNA and small interfering RNA (siRNA) with CNTs, graphene and dendrimers. Our results give a microscopic picture and mechanism of the adsorption of single- and double-strand DNA (ssDNA and dsDNA) on CNT and graphene. The nucleic acid-CNT interaction is dominated by the dispersive van der Waals (vdW) interaction. In contrast, the complexation of DNA (both ssDNA and dsDNA) and siRNA with various generations of poly-amido-amine (PAMAM) dendrimers is governed by electrostatic interactions. Our results reveal that both the DNA and siRNA form stable complex with the PAMAM dendrimer at a physiological pH when the dendrimer is positively charged due to the protonation of the primary amines. The size and binding energy of the complex increase with increase in dendrimer generation. We also give a summary of the current status in these fields and discuss future prospects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using all atom molecular dynamics simulations, we report spontaneous unzipping and strong binding of small interfering RNA (siRNA) on graphene. Our dispersion corrected density functional theory based calculations suggest that nucleosides of RNA have stronger attractive interactions with graphene as compared to DNA residues. These stronger interactions force the double stranded siRNA to spontaneously unzip and bind to the graphene surface. Unzipping always nucleates at one end of the siRNA and propagates to the other end after few base-pairs get unzipped. While both the ends get unzipped, the middle part remains in double stranded form because of torsional constraint. Unzipping probability distributions fitted to single exponential function give unzipping time (tau) of the order of few nanoseconds which decrease exponentially with temperature. From the temperature variation of unzipping time we estimate the energy barrier to unzipping. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4742189]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report spontaneous translocation of small interfering RNA (siRNA) inside carbon nanotubes (CNTs) of various diameters and chirality using all atom molecular dynamics simulations with explicit solvent. We use umbrella sampling method to calculate the free energy landscape of the siRNA entry and translocation event. Free energy profiles show that siRNA gains free energy while translocating inside CNT, and barrier for siRNA exit from CNT ranges from 40 to 110 kcal/mol depending on CNT chirality and salt concentration. The translocation time tau decreases with the increase of CNT diameter with a critical diameter of 24 angstrom for the translocation. In contrast, double strand DNA of the same sequence does not translocate inside CNT due to large free energy barrier for the translocation. This study helps in understanding the nucleic acid transport through nanopores at microscopic level and may help designing carbon nanotube based sensor for siRNA. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4773302]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonviral gene delivery offers cationic liposomes as promising instruments for the delivery of double-stranded RNA (ds RNA) molecules for successful sequence-specific gene silencing (RNA interference). The efficient delivery of siRNA (small interfering RNA) to cells while avoiding unexpected side effects is an important prerequisite for the exploitation of the power of this excellent tool. We present here six new tocopherol based cationic gemini lipids, which induce substantial gene knockdown without any obvious cytotoxicity. All the efficient coliposomal formulations derived from each of these geminis and a helper lipid, dioleoylphosphatidylethanolamine (DOPE), were well characterized using physical methods such as atomic force microscopy (AFM) and dynamic light scattering (DLS). Zeta potential measurements were conducted to estimate the surface charge of these formulations. Flow cytometric analysis showed that the optimized coliposomal formulations could transfect anti-GFP siRNA efficiently in three different GFP expressing cell lines, viz., HEK 293T, HeLa, and Caco-2, significantly better than a potent commercial standard Lipofectamine 2000 (L2K) both in the absence and in the presence of serum (FBS). Notably, the knockdown activity of coliposomes of gemini lipids was not affected even in the presence of serum (10% and 50% FBS) while it dropped down for L2K significantly. Observations under a fluorescence microscope, RT-PCR, and Western blot analysis substantiated the flow cytometry results. The efficient cellular entry of labeled siRNA in GFP expressing cells as evidenced from confocal microscopy put forward these gemini lipids among the potent lipidic carriers for siRNA. The efficient transfection capabilities were also profiled in a more relevant fashion while performing siRNA transfections against survivin (an anti-apoptotic protein) which induced substantial apoptosis. Furthermore, the survivin downregulation improved the therapeutic efficacy levels of an anticancer drug, doxorubicin, significantly. In short, the new tocopherol based gemini lipids appear to be highly promising for achieving siRNA mediated gene knockdown in various cell lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nucleic acids are most commonly associated with the genetic code, transcription and gene expression. Recently, interest has grown in engineering nucleic acids for biological applications such as controlling or detecting gene expression. The natural presence and functionality of nucleic acids within living organisms coupled with their thermodynamic properties of base-pairing make them ideal for interfacing (and possibly altering) biological systems. We use engineered small conditional RNA or DNA (scRNA, scDNA, respectively) molecules to control and detect gene expression. Three novel systems are presented: two for conditional down-regulation of gene expression via RNA interference (RNAi) and a third system for simultaneous sensitive detection of multiple RNAs using labeled scRNAs.

RNAi is a powerful tool to study genetic circuits by knocking down a gene of interest. RNAi executes the logic: If gene Y is detected, silence gene Y. The fact that detection and silencing are restricted to the same gene means that RNAi is constitutively on. This poses a significant limitation when spatiotemporal control is needed. In this work, we engineered small nucleic acid molecules that execute the logic: If mRNA X is detected, form a Dicer substrate that targets independent mRNA Y for silencing. This is a step towards implementing the logic of conditional RNAi: If gene X is detected, silence gene Y. We use scRNAs and scDNAs to engineer signal transduction cascades that produce an RNAi effector molecule in response to hybridization to a nucleic acid target X. The first mechanism is solely based on hybridization cascades and uses scRNAs to produce a double-stranded RNA (dsRNA) Dicer substrate against target gene Y. The second mechanism is based on hybridization of scDNAs to detect a nucleic acid target and produce a template for transcription of a short hairpin RNA (shRNA) Dicer substrate against target gene Y. Test-tube studies for both mechanisms demonstrate that the output Dicer substrate is produced predominantly in the presence of a correct input target and is cleaved by Dicer to produce a small interfering RNA (siRNA). Both output products can lead to gene knockdown in tissue culture. To date, signal transduction is not observed in cells; possible reasons are explored.

Signal transduction cascades are composed of multiple scRNAs (or scDNAs). The need to study multiple molecules simultaneously has motivated the development of a highly sensitive method for multiplexed northern blots. The core technology of our system is the utilization of a hybridization chain reaction (HCR) of scRNAs as the detection signal for a northern blot. To achieve multiplexing (simultaneous detection of multiple genes), we use fluorescently tagged scRNAs. Moreover, by using radioactive labeling of scRNAs, the system exhibits a five-fold increase, compared to the literature, in detection sensitivity. Sensitive multiplexed northern blot detection provides an avenue for exploring the fate of scRNAs and scDNAs in tissue culture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pre-mRNA splicing requires interaction of cis- acting intron sequences with trans -acting factors: proteins and small nuclear ribonucleoproteins (snRNPs). The assembly of these factors into a large complex, the spliceosome, is essential for the subsequent two step splicing reaction. First, the 5' splice site is cleaved and free exon 1 and a lariat intermediate (intron- exon2) form. In the second reaction the 3' splice site is cleaved the exons ligated and lariat intron released. A combination of genetic and biochemical techniques have been used here to study pre-mRNA splicing in yeast.

Yeast introns have three highly conserved elements. We made point mutations within these elements and found that most of them affect splicing efficiency in vivo and in vitro, usually by inhibiting spliceosome assembly.

To study trans -acting splicing factors we generated and screened a bank of temperature- sensitive (ts) mutants. Eleven new complementation groups (prp17 to prp27) were isolated. The four phenotypic classes obtained affect different steps in splicing and accumulate either: 1) pre-mRNA, 2) lariat intermediate, 3) excised intron or 4) both pre-mRNA and intron. The latter three classes represent novel phenotypes. The excised intron observed in one mutant: prp26 is stabilized due to protection in a snRNP containing particle. Extracts from another mutant: prpl8 are heat labile and accumulate lariat intermediate and exon 1. This is especially interesting as it allows analysis of the second splicing reaction. In vitro complementation of inactivated prp18 extracts does not require intact snRNPs. These studies have also shown the mutation to be in a previously unknown splicing protein. A specific requirement for A TP is also observed for the second step of splicing. The PRP 18 gene has been cloned and its polyadenylated transcript identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The efforts made to develop RNAi-based therapies have led to productive research in the field of infections in humans, such as hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpetic keratitis, human papillomavirus, or influenza virus. Naked RNAi molecules are rapidly digested by nucleases in the serum, and due to their negative surface charge, entry into the cell cytoplasm is also hampered, which makes necessary the use of delivery systems to exploit the full potential of RNAi therapeutics. Lipid nanoparticles (LNP) represent one of the most widely used delivery systems for in vivo application of RNAi due to their relative safety and simplicity of production, joint with the enhanced payload and protection of encapsulated RNAs. Moreover, LNP may be functionalized to reach target cells, and they may be used to combine RNAi molecules with conventional drug substances to reduce resistance or improve efficiency. This review features the current application of LNP in RNAi mediated therapy against viral infections and aims to explore possible future lines of action in this field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The autonomous pathway functions to promote flowering in Arabidopsis by limiting the accumulation of the floral repressor FLOWERING LOCUS C (FLC). Within this pathway FCA is a plant-specific, nuclear RNA-binding protein, which interacts with FY, a highly conserved eukaryotic polyadenylation factor. FCA and FY function to control polyadenylation site choice during processing of the FCA transcript. Null mutations in the yeast FY homologue Pfs2p are lethal. This raises the question as to whether these essential RNA processing functions are conserved in plants. Characterisation of an allelic series of fy mutations reveals that null alleles are embryo lethal. Furthermore, silencing of FY, but not FCA, is deleterious to growth in Nicotiana. The late-flowering fy alleles are hypomorphic and indicate a requirement for both intact FY WD repeats and the C-terminal domain in repression of FLC. The FY C-terminal domain binds FCA and in vitro assays demonstrate a requirement for both C-terminal FY-PPLPP repeats during this interaction. The expression domain of FY supports its roles in essential and flowering-time functions. Hence, FY may mediate both regulated and constitutive RNA 3'-end processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small nuclear ribonucleoprotein particles (snRNPs) and non-snRNP splicing factors containing a serine/arginine-rich domain (SR proteins) concentrate in 'speckles' in the nucleus of interphase cells(1). It is believed that nuclear speckles act as storage sites for splicing factors while splicing occurs on nascent transcripts(2). Splicing factors redistribute in response to transcription inhibition(3,4) or viral infection(5), and nuclear speckles break down and reform as cells progress through mitosis(6). We have now identified and cloned a kinase, SRPK1, which is regulated by the cell cycle and is specific for SR proteins; this kinase is related to a Caenorhabditis elegans kinase and to the fission yeast kinase Dsk1 (ref. 7). SRPK1 specifically induces the disassembly of nuclear speckles, and a high level of SRPK1 inhibits splicing in vitro. Our results indicate that SRPK1 mag have a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells, and the reorganization of nuclear speckles during mitosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

赤霉素是一种高效能的广谱植物生长调节剂,为五大植物激素之一,具有重要的生物学功能。目前利用赤霉素突变体研究生物合成途径和信号转导已经成为热点。 GA 20-氧化酶是GA生物合成中的一类关键酶,它位于GA合成途径的中心位置。本研究根据烟草(Nicotiana tabacum)GA 20-氧化酶基因序列,设计2对分别含有特定酶切位点的特异引物,以烟草基因组DNA为模板,扩增目的基因(约250 bp)片段。将正、反向目的片段分别插入中间载体的内含子两侧,再经BamH I和Sac I双酶切回收约700 bp的目的片段,插入到双元载体质粒p2355中,成功构建了含GA 20-氧化酶基因片段反向重复序列的植物表达载体p23700。分别将p2355质粒和p23700质粒导入根癌农杆菌(Agrobacterium tumefaciens)EHA105中并转化烟草叶片细胞,经卡那霉素选择培养,PCR及GUS组织染色鉴定,获得转基因烟草植株。以EHA105-p2355转化的烟草,获得41株转基因植株,均没有矮化表型;而以EHA105-p23700转化的烟草,获得转基因植株14株,其中具有矮化表型的烟草10株,表明反向重复序列转录产物能形成发夹RNA(hpRNA),产生小分子干扰RNA(small interferring RNA,简称siRNA),干扰目的基因的表达。 赤霉素含量测定表明矮化植株中赤霉素合成途径的最终产物GA3总含量明显低于野生型烟草植株。荧光定量PCR结果表明,矮化转基因烟草的GA 20-氧化酶基因表达量受到明显抑制,表达量明显低于野生型对照。同时对上游内根-贝壳杉合成酶(Ent-kaurene synthase,KS)基因,下游的GA-3β羟化酶基因进行了RT-PCR分析,结果显示上游基因的表达没有规律性变化,而下游基因表达量亦降低。上述结果表明,GA 20-氧化酶基因的表达被有效地干扰了,表达受到抑制,从而影响植株体内GA3的合成,影响植株的生长发育,导致植株矮化。并推测,GA 20-氧化酶基因受到抑制,可能影响下游基因的表达。并且通过干旱胁迫测试,发现矮化植株相对于野生型植株及不含干扰片段的转基因植株,对干旱的耐受力有了很大的提高,具有更强的耐受力。 研究结果为进一步进行相关研究奠定基础。 Gibberellin(GA) is an efficient plant growth regulator. As one of five major plant hormones, it plays an important biological function. Using GA mutant for investigating biosynthetic pathways and signal transduction has become high lights. GA 20-oxidase is a crucial enzyme involved in gibberellin biosynthesis. According to tobacco (Nicotiana tabacum) GA 20-oxidase enzyme gene sequence and based on binary vector p2355, we constructed a plant expression vector p23700, which habors an inverted repeat DNA fragment of GA 20-oxidase gene drivered by Cauliflower mosaic virus promtor (CaMV 35Sp). Binary plasmid p2355 had no inverted repeat DNA fragment of GA 20-oxidase gene. The vector p2355 and p23700 were introduced into Agrobacterium tumefaciens EHA105 and tobacco leaf transformation was conducted. After selected by kanamycin and characterized by PCR and GUS hischemical reaction, transsgenic plants were obtained. Fourtheen transgenic plants, which were transformed by EHA105-p23700, were obtained. Among them, 10 were dwarf mutants. However, 41 transgenic plants with the same normal phenotype as wild type,which were transformed by EHA105-p2355, were obtained. Analysis of Gibberellin contents showed that it was lower in dwarf mutants than in normal phenotype plants. Moreover, comparing to normal phenotype plants including wild type and transgenic plants with no interference fragment, the drought tolerance of dwarf plants have greatly increased. And their proline content increased obviously after drought test. Fluorescence quantitative real time PCR (RT-PCR) showed that GA 20-oxidase gene expression was significantly inhibited in dwarf transgenic tobacco. Meanwhile, the expression of the upstream gene ent-kaurene synthase (KS) gene and downstream gene GA-3β hydroxylase gene was also detected by RT-PCR. The results presented that KS gene expression had no regular change while GA-3β hydroxylase gene expression reduced. It implied that inhibiting GA 20-oxidase gene probably reduce the expression of downstream genes. The results showed that the transcriptional products of the foreign inverted repeat fragment can form hairpin RNA (hpRNA) to induce RNAi. It presented that GA 20-oxidase gene expression was effectively interfered, resulting in reducing GA3 synthesis and inhibiting plant growth and development, then dwarf plants were produced. However, the dwarf plants had higher tolerance of drought.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A polymeric gene carrier was developed to deliver vascular endothelial growth factor (VEGF) small interfering RNA (siRNA) for prostate cancer cells in a target-specific manner. Prostate cancer-binding peptide (PCP) was conjugated with polyethylenimine (PEI) via a poly(ethylene glycol) (PEG) linker (PEI-PEG-PCP). The PEI-PEG-PCP conjugate could effectively condense siRNA to form stable polyelectrolyte complexes (polyplexes) with an average diameter of approximately 150 nm in an aqueous solution. VEGF siRNA/PEI-PEG-PCP polyplexes exhibited significantly higher VEGF inhibition efficiency than PCP-unmodified polycationic carriers (PEI-PEG or PEI) in human prostate carcinoma cells (PC-3 cells). The enhanced gene silencing activity of VEGF siRNA/PEI-PEG-PCP was maintained even under serum conditions, owing to the steric stabilization of the polyplexes with hydrophilic PEG grafts. Confocal microscopic studies revealed that the siRNA/PEI-PEG-PCP polyplexes were delivered into PC-3 cells in a PCP ligand-specific manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The usage of RNA interference for gene knockdown in zebrafish through expression of the small interfering RNA mediators from DNA vectors has created a lot of excitement in the research community. In this work, the ability of human cytomegalovirus immediate early promoter (CMV promoter)-driven short hairpin RNA (shRNA) expression vector to induce shRNA against vascular endothelial growth factor (VEGF) gene in zebrafish was tested, and its effects on VEGF-mediated vasculogenesis and angiogenesis were evaluated. Altogether four vectors targeting various locations of VEGF gene were constructed, and pSI-V4 was proven to be the most effective one. Microinjection of pSI-V4 into the zebrafish embryos resulted in defective vascular formation and down regulation of VEGF expression. In situ hybridization analysis indicated that silencing VEGF gene expression by pSI-V4 resulted in down regulation of neuropilin-1 (NRP1), a potent VEGF receptor. Knockdown of VEGF expression by morpholino gave the same result. This provided evidence that the VEGF-mediated angiogenesis in zebrafish was in part dependent on NRP1 expression. The results contributed to a better understanding of molecular mechanisms of cardiovascular development and provided a potential promoter for making inducible knockdown in zebrafish.