911 resultados para SIZE RANGE
Resumo:
The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities. The overall aim of the project was to obtain a granular product in the size range of 2 to 4. mm. The two powders were granulated in different proportions using carboxymethylcellulose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of teawaste on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation. An increase in the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to maintain the desired product yield.
Resumo:
We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year as a function of the post-disruption increase in brightness (Δm) and subsequent brightness decay rate (τ ). The confidence limits were calculated using the brightest unknown main belt asteroid (V=18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1’s catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event’s photometric behavior in a small aperture centered on the catastrophic disruption event. We then calculated the contours in the ranges from and encompassing measured values from known cratering and disruption events and our model’s predictions. Our simplistic catastrophic disruption model suggests that and which would imply that H0≳28—strongly inconsistent withH0,B2005=23.26±0.02 predicted by Bottke et al. (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H.F. [2005]. Icarus, 179, 63–94.) using purely collisional models. However, if we assume that H0=H0,B2005 our results constrain , inconsistent with our simplistic impact-generated catastrophic disruption model. We postulate that the solution to the discrepancy is that >99% of main belt catastrophic disruptions in the size range to which this study was sensitive (∼100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V=18.5.
Resumo:
BACKGROUND: Pseudomonas aeruginosa is the most common bacterial pathogen in patients with cystic fibrosis (CF). Current infection control guidelines aim to prevent transmission via contact and respiratory droplet routes and do not consider the possibility of airborne transmission. It was hypothesised that subjects with CF produce viable respirable bacterial aerosols with coughing.
METHODS: A cross-sectional study was undertaken of 15 children and 13 adults with CF, 26 chronically infected with P aeruginosa. A cough aerosol sampling system enabled fractioning of respiratory particles of different sizes and culture of viable Gram-negative non-fermentative bacteria. Cough aerosols were collected during 5 min of voluntary coughing and during a sputum induction procedure when tolerated. Standardised quantitative culture and genotyping techniques were used.
RESULTS: P aeruginosa was isolated in cough aerosols of 25 subjects (89%), 22 of whom produced sputum samples. P aeruginosa from sputum and paired cough aerosols were indistinguishable by molecular typing. In four cases the same genotype was isolated from ambient room air. Approximately 70% of viable aerosols collected during voluntary coughing were of particles <or=3.3 microm aerodynamic diameter. P aeruginosa, Burkholderia cenocepacia, Stenotrophomonas maltophilia and Achromobacter xylosoxidans were cultivated from respiratory particles in this size range. Positive room air samples were associated with high total counts in cough aerosols (p = 0.003). The magnitude of cough aerosols was associated with higher forced expiratory volume in 1 s (r = 0.45, p = 0.02) and higher quantitative sputum culture results (r = 0.58, p = 0.008).
CONCLUSION: During coughing, patients with CF produce viable aerosols of P aeruginosa and other Gram-negative bacteria of respirable size range, suggesting the potential for airborne transmission.
Resumo:
The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We have analysed the changes in magnitude between consecutive detections of ∼ 60,000 asteroids measured by the PanSTARRS 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency toward smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1: 0.85 ± 0.13: 0.71 ± 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.
Resumo:
Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2015
Resumo:
This is a coarse grained sample with some very fine grained domains throughout the sample. The clast shape and size range from small to large, as well as angular to sub-rounded. Grain crushing is the most prevalent in this sample. It also contains some rotation structures and minor necking structures. Lineations and grain stacking can also be seen.
Resumo:
We have discovered that the current protocols to assemble Au nanoparticles based on DNA hybridization do not work well with the small metal nanoparticles (e.g. 5 nm Au, 3.6 nm Pt and 3.2 nm Ru particles). Further investigations revealed the presence of strong interaction between the oligonucleotide backbone and the surface of the small metal nanoparticles. The oligonucleotides in this case are recumbent on the particle surface and are therefore not optimally oriented for hybridization. The nonspecific adsorption of oligonucleotides on small metal nanoparticles must be overcome before DNA hybridization can be accepted as a general assembly method. Two methods have been suggested as possible solutions to this problem. One is based on the use of stabilizer molecules which compete with the oligonucleotides for adsorption on the metal nanoparticle surface. Unfortunately, the reported success of this approach in small Au nanoparticles (using K₂BSPP) and Au films (using 6-mercapto-1-hexanol) could not be extended to the assembly of Pt and Ru nanoparticles by DNA hybridization. The second approach is to simply use larger metal particles. Indeed most reports on the DNA hybridization induced assembly of Au nanoparticles have made use of relatively large particles (>10 nm), hinting at a weaker non-specific interaction between the oligonucleotides and large Au nanoparticles. However, most current methods of nanoparticle synthesis are optimized to produce metal nanoparticles only within a narrow size range. We find that core-shell nanoparticles formed by the seeded growth method may be used to artificially enlarge the size of the metal particles to reduce the nonspecific binding of oligonucleotides. We demonstrate herein a core-shell assisted growth method to assemble Pt and Ru nanoparticles by DNA hybridization. This method involves firstly synthesizing approximately 16 nm core-shell Ag-Pt and 21 nm core-shell Au-Ru nanoparticles from 9.6 nm Ag seeds and 17.2 nm Au seeds respectively by the seed-mediated growth method. The core-shell nanoparticles were then functionalized by complementary thiolated oligonucleotides followed by aging in 0.2 M PBS buffer for 6 hours. The DNA hybridization induced bimetallic assembly of Pt and Ru nanoparticles could then be carried out in 0.3 M PBS buffer for 10 hours.
Resumo:
The Ivory-billed Woodpecker (Campephilus principalis) disappeared from the forests of southeastern North America in the early 20th Century and for more than 50 years has been widely considered extinct. On 21 May 2005, we detected a bird that we identified as an Ivory-billed Woodpecker in the mature swamp forest along the Choctawhatchee River in the panhandle of Florida. During a subsequent year of research, members of our small search team observed birds that we identified as Ivory-billed Woodpeckers on 14 occasions. We heard sounds that matched descriptions of Ivory-billed Woodpecker acoustic signals on 41 occasions. We recorded 99 putative double knocks and 210 putative kent calls. We located cavities in the size range reported for Ivory-billed Woodpeckers and larger than those of Pileated Woodpeckers (Dryocopus pileatus) that have been reported in the literature or that we measured in Alabama. We documented unique foraging signs consistent with the feeding behavior of Ivory-billed Woodpeckers. Our evidence suggests that Ivory-billed Woodpeckers may be present in the forests along the Choctawhatchee River and warrants an expanded search of this bottomland forest habitat.
Resumo:
A multiple factor parametrization is described to permit the efficient calculation of collision efficiency (E) between electrically charged aerosol particles and neutral cloud droplets in numerical models of cloud and climate. The four-parameter representation summarizes the results obtained from a detailed microphysical model of E, which accounts for the different forces acting on the aerosol in the path of falling cloud droplets. The parametrization's range of validity is for aerosol particle radii of 0.4 to 10 mu m, aerosol particle densities of I to 2.0 g cm(-3), aerosol particle charges from neutral to 100 elementary charges and drop radii from 18.55 to 142 mu m. The parametrization yields values of E well within an order of magnitude of the detailed model's values, from a dataset of 3978 E values. Of these values 95% have modelled to parametrized ratios between 0.5 and 1.5 for aerosol particle sizes ranging between 0.4 and 2.0 mu m, and about 96% in the second size range. This parametrization speeds up the calculation of E by a factor of similar to 10(3) compared with the original microphysical model, permitting the inclusion of electric charge effects in numerical cloud and climate models.
Resumo:
Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude) at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1) was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.
The mid-level stratus cloud was vertically thin (~400 m), horizontally extensive (covering 100 s of km) and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm) stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively). No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Particle number concentrations (in the size range 0.1
Resumo:
Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that the adverse health effects of airborne particles may scale with the airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter particles emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m high. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and indicate a loss of nanoparticles from air aged during less turbulent conditions. These results suggest that nanoparticles are lost by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health.
Resumo:
Mannitol is a polymorphic excipient which is usually used in pharmaceutical products as the beta form, although other polymorphs (alpha and delta) are common contaminants. Binary mixtures containing beta and delta mannitol were prepared to quantify the concentration of the beta form using FT-Raman spectroscopy. Spectral regions characteristic of each form were selected and peak intensity ratios of beta peaks to delta peaks were calculated. Using these ratios, a correlation curve was established which was then validated by analysing further samples of known composition. The results indicate that levels down to 2% beta could be quantified using this novel, non-destructive approach. Potential errors associated with quantitative studies using FT-Raman spectroscopy were also researched. The principal source of variability arose from inhomogeneities on mixing of the samples; a significant reduction of these errors was observed by reducing and controlling the particle size range. The results show that FT-Raman spectroscopy can be used to rapidly and accurately quantitate polymorphic mixtures.
Resumo:
Mannitol is a polymorphic pharmaceutical excipient, which commonly exists in three forms: alpha, beta and delta. Each polymorph has a needle-like morphology, which can give preferred orientation effects when analysed by X-ray powder diffractometry (XRPD) thus providing difficulties for quantitative XRPD assessments. The occurrence of preferred orientation may be demonstrated by sample rotation and the consequent effects on X-ray data can be minimised by reducing the particle size. Using two particle size ranges (less than 125 and 125–500�microns), binary mixtures of beta and delta mannitol were prepared and the delta component was quantified. Samples were assayed in either a static or rotating sampling accessory. Rotation and reducing the particle size range to less than�125 microns halved the limits of detection and quantitation to 1 and 3.6%, respectively. Numerous potential sources of assay errors were investigated; sample packing and mixing errors contributed the greatest source of variation. However, the rotation of samples for both particle size ranges reduced the majority of assay errors examined. This study shows that coupling sample rotation with a particle size reduction minimises preferred orientation effects on assay accuracy, allowing discrimination of two very similar polymorphs at around the 1% level
Resumo:
Galactic Cosmic Rays are one of the major sources of ion production in the troposphere and stratosphere. Recent studies have shown that ions form electrically charged clusters which may grow to become cloud droplets. Aerosol particles charge by the attachment of ions and electrons. The collision efficiency between a particle and a water droplet increases, if the particle is electrically charged, and thus aerosol-cloud interactions can be enhanced. Because these microphysical processes may change radiative properties of cloud and impact Earth's climate it is important to evaluate these processes' quantitative effects. Five different models developed independently have been coupled to investigate this. The first model estimates cloud height from dew point temperature and the temperature profile. The second model simulates the cloud droplet growth from aerosol particles using the cloud parcel concept. In the third model, the scavenging rate of the aerosol particles is calculated using the collision efficiency between charged particles and droplets. The fourth model calculates electric field and charge distribution on water droplets and aerosols within cloud. The fifth model simulates the global electric circuit (GEC), which computes the conductivity and ionic concentration in the atmosphere in altitude range 0–45 km. The first four models are initially coupled to calculate the height of cloud, boundary condition of cloud, followed by growth of droplets, charge distribution calculation on aerosols and cloud droplets and finally scavenging. These models are incorporated with the GEC model. The simulations are verified with experimental data of charged aerosol for various altitudes. Our calculations showed an effect of aerosol charging on the CCN concentration within the cloud, due to charging of aerosols increase the scavenging of particles in the size range 0.1 µm to 1 µm.
Resumo:
Enantioselective heterogeneous hydrogenation of Cdouble bond; length as m-dashO bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no “particle size effect” on the adsorption mode of the tartaric acid in the particle size range ~ 90–~ 300 nm.