970 resultados para SINGLET MOLECULAR OXYGEN


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research throughout the last century has led to a consensus as to the strategy of the humoral component of the immune system. The essence is that, for killing, the antibody molecule activates additional systems that respond to antibody–antigen union. We now report that the immune system seems to have a previously unrecognized chemical potential intrinsic to the antibody molecule itself. All antibodies studied, regardless of source or antigenic specificity, can convert molecular oxygen into hydrogen peroxide, thereby potentially aligning recognition and killing within the same molecule. Aside from pointing to a new chemical arm for the immune system, these results may be important to the understanding of how antibodies evolved and what role they may play in human diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photosystem II is a reaction center protein complex located in photosynthetic membranes of plants, algae, and cyanobacteria. Using light energy, photosystem II catalyzes the oxidation of water and the reduction of plastoquinone, resulting in the release of molecular oxygen. A key component of photosystem II is cytochrome b559, a membrane-embedded heme protein with an unknown function. The cytochrome is unusual in that a heme links two separate polypeptide subunits, α and β, either as a heterodimer (αβ) or as two homodimers (α2 and β2). To determine the structural organization of cytochrome b559 in the membrane, we used site-directed mutagenesis to fuse the coding regions of the two respective genes in the cyanobacterium Synechocystis sp. PCC 6803. In this construction, the C terminus of the α subunit (9 kDa) is attached to the N terminus of the β subunit (5 kDa) to form a 14-kDa αβ fusion protein that is predicted to have two membrane-spanning α-helices with antiparallel orientations. Cells containing the αβ fusion protein grow photoautotrophically and assemble functional photosystem II complexes. Optical spectroscopy shows that the αβ fusion protein binds heme and is incorporated into photosystem II. These data support a structural model of cytochrome b559 in which one heme is coordinated to an α2 homodimer and a second heme is coordinated to a β2 homodimer. In this model, each photosystem II complex contains two cytochrome b559 hemes, with the α2 heme located near the stromal side of the membrane and the β2 heme located near the lumenal side.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abscisic acid (ABA) 8′-hydroxylase catalyzes the first step in the oxidative degradation of (+)-ABA. The development of a robust in vitro assay has now permitted detailed examination and characterization of this enzyme. Although several factors (buffer, cofactor, and source tissue) were critical in developing the assay, the most important of these was the identification of a tissue displaying high amounts of in vivo enzyme activity (A.J. Cutler, T.M. Squires, M.K. Loewen, J.J. Balsevich [1997] J Exp Bot 48: 1787–1795). (+)-ABA 8′-hydroxylase is an integral membrane protein that is localized to the microsomal fraction in suspension-cultured maize (Zea mays) cells. (+)-ABA metabolism requires both NADPH and molecular oxygen. NADH was not an effective cofactor, although there was substantial stimulation of activity (synergism) when it was included at rate-limiting NADPH concentrations. The metabolism of (+)-ABA was progressively inhibited at O2 concentrations less than 10% (v/v) and was very low (less than 5% of control) under N2. (+)-ABA 8′-hydroxylase activity was inhibited by tetcyclacis (50% inhibition at 10−6 m), cytochrome c (oxidized form), and CO. The CO inhibition was reversible by light from several regions of the visible spectrum, but most efficiently by blue and amber light. These data strongly support the contention that (+)-ABA 8′-hydroxylase is a cytochrome P450 monooxygenase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A strain of Synechococcus sp. strain PCC 7942 with no functional Fe superoxide dismutase (SOD), designated sodB−, was characterized by its growth rate, photosynthetic pigments, and cyclic photosynthetic electron transport activity when treated with methyl viologen or norflurazon (NF). In their unstressed conditions, both the sodB− and wild-type strains had similar chlorophyll and carotenoid contents and catalase activity, but the wild type had a faster growth rate and higher cyclic electron transport activity. The sodB− was very sensitive to methyl viologen, indicating a specific role for the FeSOD in protection against superoxide generated in the cytosol. In contrast, the sodB− mutant was less sensitive than the wild type to oxidative stress imposed with NF. This suggests that the FeSOD does not protect the cell from excited singlet-state oxygen generated within the thylakoid membrane. Another up-regulated antioxidant, possibly the MnSOD, may confer protection against NF in the sodB− strain. These results support the hypothesis that different SODs have specific protective functions within the cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The heart of oxygenic photosynthesis is photosystem II (PSII), a multisubunit protein complex that uses solar energy to drive the splitting of water and production of molecular oxygen. The effectiveness of the photochemical reaction center of PSII depends on the efficient transfer of excitation energy from the surrounding antenna chlorophylls. A kinetic model for PSII, based on the x-ray crystal structure coordinates of 37 antenna and reaction center pigment molecules, allows us to map the major energy transfer routes from the antenna chlorophylls to the reaction center chromophores. The model shows that energy transfer to the reaction center is slow compared with the rate of primary electron transport and depends on a few bridging chlorophyll molecules. This unexpected energetic isolation of the reaction center in PSII is similar to that found in the bacterial photosystem, conflicts with the established view of the photophysics of PSII, and may be a functional requirement for primary photochemistry in photosynthesis. In addition, the model predicts a value for the intrinsic photochemical rate constant that is 4 times that found in bacterial reaction centers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The toil by photosynthesizing cyanobacteria and blue-green algae of nearly three billion years appeared to have finally resulted in the sufficient accumulation of molecular oxygen. So, the stage was set for the emergence, at the ocean bottom, of diverse animals that were consumers of molecular oxygen. It now appears that this Cambrian explosion, during which nearly all the extant animal phyla have emerged, was of an astonishingly short duration, lasting only 6-10 million years. Inasmuch as only a 1% DNA base sequence change is expected in 10 million years under the standard spontaneous mutation rate, I propose that all those diverse animals of the early Cambrian period, some 550 million years ago, were endowed with nearly identical genomes, with differential usage of the same set of genes accounting for the extreme diversities of body forms. Some of the more pertinent genes that are thought to be included in the Cambrian pananimalia genome are as follows. (i) A gene for lysyloxidase that, in the presence of molecular oxygen, crosslinked collagen triple helices to produce ligaments and tendons, thus contributing to the stout bodies of the Cambrian animals. (ii) Genes for hemoglobin; these internal transporters of molecular oxygen are today seen sporadically in members of diverse animal phyla. (iii) The Pax-6 gene for eye formation; the eyes of a ribbon worm to a human are organized by this gene. In animals without eyes, the same gene organizes other sensory systems and organs. (iv) A series of Hox genes for the anterior-posterior (cranio-caudal) body plans: these genes are also present in all phyla of the kingdom Animalia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

D-amino acid oxidase is the prototype of the FAD-dependent oxidases. It catalyses the oxidation of D-amino acids to the corresponding alpha-ketoacids. The reducing equivalents are transferred to molecular oxygen with production of hydrogen peroxide. We have solved the crystal structure of the complex of D-amino acid oxidase with benzoate, a competitive inhibitor of the substrate, by single isomorphous replacement and eightfold averaging. Each monomer is formed by two domains with an overall topology similar to that of p-hydroxybenzoate hydroxylase. The benzoate molecule lays parallel to the flavin ring and is held in position by a salt bridge with Arg-283. Analysis of the active site shows that no side chains are properly positioned to act as the postulated base required for the catalytic carboanion mechanism. On the contrary, the benzoate binding mode suggests a direct transfer of the substrate alpha-hydrogen to the flavin during the enzyme reductive half-reaction.The active site Of D-amino acid oxidase exhibits a striking similarity with that of flavocytochrome b2, a structurally unrelated FMN-dependent flavoenzyme. The active site groups (if these two enzymes are in fact superimposable once the mirror-image of the flavocytochrome b2 active site is generated with respect to the flavin plane. Therefore, the catalytic sites of D-amino acid oxidase and flavocytochrome b2 appear to have converged to a highly similar but enantiomeric architecture in order to catalvze similar reactions (oxidation of alpha-amino acids or alpha-hydroxy acids), although with opposite stereochemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytochrome oxidase is a membrane protein complex that catalyzes reduction of molecular oxygen to water and utilizes the free energy of this reaction to generate a transmembrane proton gradient during respiration. The electron entry site in subunit II is a mixed-valence dinuclear copper center in enzymes that oxidize cytochrome c. This center has been lost during the evolution of the quinoloxidizing branch of cytochrome oxidases but can be restored by engineering. Herein we describe the crystal structures of the periplasmic fragment from the wild-type subunit II (CyoA) of Escherichia coli quinol oxidase at 2.5-A resolution and of the mutant with the engineered dinuclear copper center (purple CyoA) at 2.3-A resolution. CyoA is folded as an 11-stranded mostly antiparallel beta-sandwich followed by three alpha-helices. The dinuclear copper center is located at the loops between strands beta 5-beta 6 and beta 9-beta 10. The two coppers are at a 2.5-A distance and symmetrically coordinated to the main ligands that are two bridging cysteines and two terminal histidines. The residues that are distinct in cytochrome c and quinol oxidases are around the dinuclear copper center. Structural comparison suggests a common ancestry for subunit II of cytochrome oxidase and blue copper-binding proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diferentes complexos de cobre(II), contendo ligantes do tipo base de Schiff e um grupamento imidazólico, com interesse bioinorgânico, catalítico e como novos materiais, foram preparados na forma de sais perclorato, nitrato ou cloreto e caracterizados através de diferentes técnicas espectroscópicas (UV/Vis, IR, EPR, Raman) e espectrometria de massa Tandem (ESI-MS/MS), além de análise elementar, condutividade molar e medidas de propriedades magnéticas. Alguns destes compostos, obtidos como cristais adequados, tiveram suas estruturas determinadas por cristalografia de raios-X. As espécies di- e polinucleares contendo pontes cloreto, mostraram desdobramentos das hiperfinas nos espectros de EPR, relacionados à presença do equilíbrio com a respectiva espécie mononuclear, devido à labilidade dos íons cloretos, dependendo do contra-íon e do tipo de solvente utilizado. Adicionalmente, em solução alcalina, estes compostos estão em equilíbrio com as correspondentes espécies polinucleares, onde os centros de cobre estão ligados através de um ligante imidazolato. Em meio alcalino, estes compostos polinucleares contendo ponte imidazolato foram também isolados e caracterizados por diferentes técnicas espectroscópicas e magnéticas. Através da variação estrutural e também do ligante-ponte foi possível modular o fenômeno da interação magnética entre os íons de cobre em estruturas correlatas di- e polinucleares. Os respectivos parâmetros magnéticos foram obtidos com ajuste das curvas experimentais de XM vs T, correlacionando-se muito bem com a geometria, ângulos e distâncias de ligação entre os íons, quando comparado com outros complexos similares descritos na literatura. Posteriormente, estudaram-se os fatores relacionados com a reatividade de todas essas espécies como catalisadores na oxidação de substratos de interesse (fenóis e aminas), através da variação do tamanho da cavidade nas estruturas cíclicas ou de variações no ligante coordenado ao redor do íon metálico. Vários deles se mostraram bons miméticos de tirosinases e catecol oxidases. Um novo complexo-modelo da citocromo c oxidase (CcO), utilizando a protoporfirina IX condensada ao quelato N,N,-bis[2-(1,2-metilbenzimidazolil)etil]amino e ao resíduo de glicil-L-histidina, foi sintetizado e caracterizado através de diferentes técnicas espectroscópicas, especialmente EPR. A adição de H2O2 ao sistema completamente oxidado, FeIII/CuII, a -55°C, ou o borbulhamento de oxigênio molecular a uma solução do complexo na sua forma reduzida, FeII/CuI, saturada de CO, resultou na formação de adutos com O2, de baixo spin, estáveis a baixas temperaturas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ceria-catalyzed soot oxidation mechanism has been studied by a pulse technique with labeled O2 in the absence and presence of NO, using ceria–soot mixtures prepared in the loose contact mode. In the absence of soot, the ceria-catalyzed oxidation of NO to NO2 takes place with ceria oxygen and not with gas-phase O2. However, the oxygen exchange process between gas-phase O2 and ceria oxygen (to yield back O2, but with oxygen atoms coming from ceria) prevailed with regard to the ceria-catalyzed oxidation of NO to NO2. Gas-phase O2 did not react directly with soot when pulsed to a soot–ceria loose contact mixture. Instead, ceria oxygen is transferred to soot (this step does not require gas-phase molecular oxygen to be present), and gas-phase O2 fills up the vacancies created on the oxide in a further step. The transfer of oxygen between ceria and soot occurred directly in the absence of NO. However, in the presence of NO, NO2 is expected to be additionally generated by ceria oxygen oxidation, which also reacts with soot. The main reaction products of the ceria-catalyzed soot oxidation reaction with NO/O2 were CO2 and NO. Additionally, evidence of the reduction of NOx to N2 was found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen peroxide is a substrate or side-product in many enzyme-catalyzed reactions. For example, it is a side-product of oxidases, resulting from the re-oxidation of FAD with molecular oxygen, and it is a substrate for peroxidases and other enzymes. However, hydrogen peroxide is able to chemically modify the peptide core of the enzymes it interacts with, and also to produce the oxidation of some cofactors and prostetic groups (e.g., the hemo group). Thus, the development of strategies that may permit to increase the stability of enzymes in the presence of this deleterious reagent is an interesting target. This enhancement in enzyme stability has been attempted following almost all available strategies: site-directed mutagenesis (eliminating the most reactive moieties), medium engineering (using stabilizers), immobilization and chemical modification (trying to generate hydrophobic environments surrounding the enzyme, to confer higher rigidity to the protein or to generate oxidation-resistant groups), or the use of systems capable of decomposing hydrogen peroxide under very mild conditions. If hydrogen peroxide is just a side-product, its immediate removal has been reported to be the best solution. In some cases, when hydrogen peroxide is the substrate and its decomposition is not a sensible solution, researchers coupled one enzyme generating hydrogen peroxide “in situ” to the target enzyme resulting in a continuous supply of this reagent at low concentrations thus preventing enzyme inactivation. This review will focus on the general role of hydrogen peroxide in biocatalysis, the main mechanisms of enzyme inactivation produced by this reactive and the different strategies used to prevent enzyme inactivation caused by this “dangerous liaison”.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (ΩTLE = 1/365 days) differs from that of our present-day Earth (PDE) (ΩPDE = 1/1 day). The middle atmosphere reaches a steady state a symptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [(Ox) ≈ (O3)]. At these altitudes, the lifetime of odd oxygen is ~16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column global mean is reduced by ~19.3 %. The day side and the night side total ozone column means are reduced by 23.21 and 15.52 %, respectively. Finally, we present the total ozone column (TOC) maps as viewed by a remote observer for four phases of the TLE during its revolution around the star. The mean TOC values of the four phases of the TLE vary by up to 23 %.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sulfite dehydrogenase from Starkeya novella is the only known sulfite-oxidizing enzyme that forms a permanent heterodimeric complex between a molybdenum and a heme c-containing subunit and can be crystallized in an electron transfer competent conformation. Tyr236 is a highly conserved active site residue in sulfite oxidoreductases and has been shown to interact with a nearby arginine and a molybdenum-oxo ligand that is involved in catalysis. We have created a Tyr236 to Phe substitution in the SorAB sulfite dehydrogenase. The purified SDHY236F protein has been characterized in terms of activity, structure, intramolecular electron transfer, and EPR properties. The substituted protein exhibited reduced turnover rates and substrate affinity as well as an altered reactivity toward molecular oxygen as an electron acceptor. Following reduction by sulfite and unlike SDHWT, the substituted enzyme was reoxidized quickly in the presence of molecular oxygen, a process reminiscent of the reactions of the sulfite oxidases. SDHY236F also exhibited the pH-dependent CW-EPR signals that are typically observed in vertebrate sulfite oxidases, allowing a direct link of CW-EPR properties to changes caused by a single-amino acid substitution. No quantifiable electron transfer was seen in laser flash photolysis experiments with SDHY236F. The crystal structure of SDHY236F clearly shows that as a result of the substitution the hydrogen bonding network surrounding the active site is disturbed, resulting in an increased mobility of the nearby arginine. These disruptions underline the importance of Tyr236 for the integrity of the substrate binding site and the optimal alignment of Arg55, which appears to be necessary for efficient electron transfer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The susceptibility of tetrahydropterins to oxidation was investigated in vitro and related to in vivo metabolism. At physiological pH, tetrahydrobiopterin (BH4) was oxidized, with considerable loss of the biopterin skeleton, by molecular oxygen. The hydroxyl radical (.OH) was found to increase this oxidation and degradation, whilst physiological concentrations of glutathione (GSH) retarded both the dioxygen and .OH mediated oxidation. Nitrite, at acid pH, oxidized BH4 to biopterin and tetrahydrofolates to products devoid of folate structure. Loss of dietary folates, from the stomach, due to nitrite mediated catabolism is suggested. The in vivo response of BH4 metabolism to oxidising conditions was examined in the rat brain and liver. Acute starvation depressed brain biopterins and transiently BH4 biosynthetic and salvage (dihydropteridine reductase, DHPR) pathways. Loss of biopterins, in starvation, is suggested to arise primarily from catabolism, due to oxygen radical formation and GSH depletion. L-cysteine administration to starving rats was found to elevate tissue biopterins, whilst depletion of GSH in feeding rats, by L-buthionine sulfoximine, decreased biopterins. An in vivo role for GSH to protect tetrahydropterins from oxidation is suggested. The in vivo effect of phenelzine dosing was investigated. Administration lowered brain biopterins, in the presence of dietary tyrosine. This loss is considered to arise from p-tyramine generation and subsequent DHPR inhibition. Observed elevations in plasma biopterins were in line with this mechanism. In conditions other than gross inhibition of DHPR or BH4 biosynthesis, plasma total biopterins were seen to be poor indicators of tissue BH4 metabolism. Evidence is presented indicating that the pterin formed in tissue samples by acid iodine oxidation originates from the tetrahydrofolate pool and 7,8-dihydropterin derived from BH4 oxidation. The observed reduction in this pterin by prior in vivo nitrous oxide exposure and elevation by starvation and phenelzine administration is discussed in this light. The biochemical importance of the changes in tetrahydropterin metabolism observed in this thesis are discussed with extrapolation to the situation in man, where appropriate. An additional role for BH4 as a tissue antioxidant and reductant is also considered.