981 resultados para Rocks, Carbonate
Resumo:
An intrinsic exposed core optical fiber sensor (IECOFS) made from fused silica was used to monitor the crystallization of calcium carbonate (CaCO3) and CaCO3/calcium sulfate (CaSO4) composite at 100 and 120 °C in the absence and presence of low-molar-mass (Mn ≤ 2000) poly(acrylic acid) (PAA) with different end groups. The IECOFS responded only to deposition and growth processes on the fiber surface rather than changes occurring in the bulk of the solution. Hexyl isobutyrate-terminated PAA (Mn = 1400) and hexadecyl isobutyrate-terminated PAA (Mn = 1700) were the most effective species in preventing CaCO3 deposition. Phase transformation from vaterite to aragonite/calcite decreased with increasing hydrophobicity of the PAA end group. Low-molar-mass PAA at 10 ppm showed very significant inhibition of CaCO3/CaSO4 composite formation for all end groups investigated.
Resumo:
The kinetics of decomposition of the carbonate Sr2Zr2O5CO3, are greatly influenced by the thermal effects during its formation. (α−t) curves are found to be sigmoidal and they could be analysed based on power law equations followed by first-order decay. The presence of carbon in the vacuum-prepared sample of carbonate has a strong deactivating effect. The carbonate is fairly crystalline and its decomposition leads to the formation of crystalline strontium zirconate.
Resumo:
Crystal structure determination at room temperature [292 (2) K] of racemic 1,1'-binaphthalene-2,2'-diyl diethyl bis(carbonate), C26H22O6, showed that one of the terminal carbon-carbon bond lengths is very short [Csp(3)-Csp(3) = 1.327 (6) angstrom]. The reason for such a short bond length has been analysed by collecting data sets on the same crystal at 393, 150 and 90 K. The values of the corrected bond lengths clearly suggest that the shortening is mainly due to positional disorder at two sites, with minor perturbations arising as a result of thermal vibrations. The positional disorder has been resolved in the analysis of the 90 K data following the changes in the unit-cell parameters for the data sets at 150 and 90 K, which appear to be an artifact of a near centre of symmetry relationship between the two independent molecules in the space group P (1) over bar at these temperatures. Indeed, the unit cell at low temperature (150 and 90 K) is a supercell of the room-temperature unit cell.
Resumo:
Dehydroamino acids are important precursors for the synthesis of a number of unnatural amino acids and are structural components in many biologically active peptide derivatives. However, efficient synthetic procedures for their production in large amounts and without side reactions are limited. We report here an improved procedure for the synthesis of dehydroalanine and dehydroamino butyric acid from the carbonate derivatives of serine and threonine using TBAF. The antiselective E-2 elimination of the carbonate derivatives of serine and threonine using TBAF is milder and more efficient than other available procedures. The elimination reaction is completed in less than 10 min with various carbonate derivatives studied and the methodology is very efficient for the synthesis of dehydroamino acids and dehydropeptides. The procedure thus provides an easy access to key synthetic precursors and can be used to introduce interesting structural elements to designed peptides. Copyright
Resumo:
An application of Artificial Neural Networks for predicting the stress-strain response of jointed rocks under different confining pressures is presented in this paper. Rocks of different compressive strength with different joint properties (frequency, orientation and strength of joints) are considered in this study. The database for training the neural network is formed from the results of triaxial compression tests on different intact and jointed rocks with different joint properties tested at different confining pressures reported by various researchers in the literature. The network was trained using a three-layered network with the feed-forward back propagation algorithm.About 85% of the data was used for training and the remaining 15% was used for testing the network. Results from the analyses demonstrated that the neural network approach is effective in capturing the stress-strain behaviour of intact rocks and the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different jointed rocks, whose intact strength varies from 11.32 MPa to 123 MPa, spacing of joints varies from 10 cm to 100 cm. and confining pressures range from 0 to 13.8 MPa. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study provides insights into the composition and origin of ferropicrite dikes (FeOtot = 13 17 wt. %; MgO = 13 19 wt. %) and associated meimechite, picrite, picrobasalt, and basalt dikes found at Vestfjella, western Dronning Maud Land, Antarctica. The dikes crosscut Jurassic Karoo continental flood basalts (CFB) that were emplaced during the early stages of the breakup of the Gondwana supercontinent ~180 Ma ago. Selected samples (31 overall from at least eleven dikes) were analyzed for their mineral chemical, major element, trace element, and Sr, Nd, Pb, and Os isotopic compositions. The studied samples can be divided into two geochemically distinct types: (1) The depleted type (24 samples from at least nine dikes) is relatively depleted in the most incompatible elements and exhibits isotopic characteristics (e.g., initial εNd of +4.8 to +8.3 and initial 187Os/188Os of 0.1256 0.1277 at 180 Ma) similar to those of mid-ocean ridge basalts (MORB); (2) The enriched type (7 samples from at least two dikes) exhibits relatively enriched incompatible element and isotopic characteristics (e.g., initial εNd of +1.8 to +3.6 and initial 187Os/188Os of 0.1401 0.1425 at 180 Ma) similar to those of oceanic island basalts. Both magma types have escaped significant contamination by the continental crust. The depleted type is related to the main phase of Karoo magmatism and originated as highly magnesian (MgO up to 25 wt. %) partial melts at high temperatures (mantle potential temperature >1600 °C) and pressures (~5 6 GPa) from a sublithospheric, water-bearing, depleted peridotite mantle source. The enriched type sampled pyroxene-bearing heterogeneities that can be traced down to either recycled oceanic crust or melt-metasomatized portions of the sublithospheric or lithospheric mantle. The source of the depleted type represents a sublithospheric end-member source for many Karoo lavas and has subsequently been sampled by the MORBs of the Indian Ocean. These observations, together with the purported high temperatures, indicate that the Karoo CFBs were formed in an extensive melting episode caused mainly by internal heating of the upper mantle beneath the Gondwana supercontinent. My research supports the view that ferropicritic melts can be generated in several ways: the relative Fe-enrichment of mantle partial melts is most readily achieved by (1) relatively low degree of partial melting, (2) high pressure of partial melting, and (3) melting of enriched source components (e.g., pyroxenite and metasomatized peridotite). Ferropicritic whole-rock compositions could also result from accumulation, secondary alteration, and fractional crystallization, however, and caution is required when addressing the parental magma composition.
Resumo:
Propargyl pentafluorophenyl carbonate was synthesised in quantitative yield by the reaction of propargyl chloroformate and pentafluorophenol. All the N-propargyloxycarbonyl (N-Poc) amino acids were obtained in good yield. The use of Poc-OPfp in peptide synthesis has been explored. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The applicability of Artificial Neural Networks for predicting the stress-strain response of jointed rocks at varied confining pressures, strength properties and joint properties (frequency, orientation and strength of joints) has been studied in the present paper. The database is formed from the triaxial compression tests on different jointed rocks with different confining pressures and different joint properties reported by various researchers. This input data covers a wide range of rock strengths, varying from very soft to very hard. The network was trained using a 3 layered network with feed forward back propagation algorithm. About 85% of the data was used for training and remaining15% for testing the predicting capabilities of the network. Results from the analyses were very encouraging and demonstrated that the neural network approach is efficient in capturing the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different rocks, whose intact strength vary from 11.32 MPa to 123 MPa and spacing of joints vary from 10 cm to 100 cm for confining pressures ranging from 0 to 13.8 MPa.