937 resultados para Rigid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diese Doktorarbeit studiert steife, lineare Polyelektrolyteim Rahmen eines Zellenmodells. Im Mittelpunkt steht dabeidas Phänomen der Gegenionenkondensation an der Oberflächeeines geladenen Makroions. Seine Abhängigkeit vonParametern wie Dichte, Bjerrum-Länge, Valenz undIonenstärke wird untersucht, und seine Auswirkungen aufwichtige Observablen wie Ionenverteilungen und osmotischerDruck werden diskutiert. Von theoretischer Seite werdendiese Probleme mit Hilfe der nichtlinearen undlinearisierten Poisson-Boltzmann Gleichung sowieallgemeineren Dichtefunktionaltheorien behandelt.Molekulardynamik-Simulationen ergänzen die theoretischenErgebnisse und grenzen den Bereich ihrer Gültigkeit ab. Ausgehend von der Poisson-Boltzmann Theorie wird einneuartiges Kriterium fuer Gegenionenkondensationvorgeschlagen, welches mit der Manning-Theorie verträglichist. Ein neuer Korrekturterm fuer die freie Energie inPoisson-Boltzmann Näherung wird hergeleitet, ausgehend vomModell eines einkomponentigen Plasmas. Die entsprechendenFunktionale der freien Energie werden mittels einerneuartigen Monte-Carlo Methode minimiert. Diedurchgeführten Computersimulationen untersucheninsbesondere die qualitativ neuen Phänomene, welche beihoher Ionenstärke auftreten, wie etwa Ladungsumkehr, einnegativer osmotischer Druck oder ein nicht-monotoneszeta-Potential. In all diesen Fällen wird die Bedeutungmultivalenter Ionen offensichtlich. In den Simulationen werden elektrostatische Wechselwirkungenmittels Particle-Mesh-Ewald Algorithmen berechnet. DerenAufbau wird in einem einheitlichen mathematischen Rahmenanalysiert. Speziell fuer die P3M Methode wird erstmalseine analytische Fehlerabschätzung hergeleitet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myocardial perfusion quantification by means of Contrast-Enhanced Cardiac Magnetic Resonance images relies on time consuming frame-by-frame manual tracing of regions of interest. In this Thesis, a novel automated technique for myocardial segmentation and non-rigid registration as a basis for perfusion quantification is presented. The proposed technique is based on three steps: reference frame selection, myocardial segmentation and non-rigid registration. In the first step, the reference frame in which both endo- and epicardial segmentation will be performed is chosen. Endocardial segmentation is achieved by means of a statistical region-based level-set technique followed by a curvature-based regularization motion. Epicardial segmentation is achieved by means of an edge-based level-set technique followed again by a regularization motion. To take into account the changes in position, size and shape of myocardium throughout the sequence due to out of plane respiratory motion, a non-rigid registration algorithm is required. The proposed non-rigid registration scheme consists in a novel multiscale extension of the normalized cross-correlation algorithm in combination with level-set methods. The myocardium is then divided into standard segments. Contrast enhancement curves are computed measuring the mean pixel intensity of each segment over time, and perfusion indices are extracted from each curve. The overall approach has been tested on synthetic and real datasets. For validation purposes, the sequences have been manually traced by an experienced interpreter, and contrast enhancement curves as well as perfusion indices have been computed. Comparisons between automatically extracted and manually obtained contours and enhancement curves showed high inter-technique agreement. Comparisons of perfusion indices computed using both approaches against quantitative coronary angiography and visual interpretation demonstrated that the two technique have similar diagnostic accuracy. In conclusion, the proposed technique allows fast, automated and accurate measurement of intra-myocardial contrast dynamics, and may thus address the strong clinical need for quantitative evaluation of myocardial perfusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n this paper we present a novel hybrid approach for multimodal medical image registration based on diffeomorphic demons. Diffeomorphic demons have proven to be a robust and efficient way for intensity-based image registration. A very recent extension even allows to use mutual information (MI) as a similarity measure to registration multimodal images. However, due to the intensity correspondence uncertainty existing in some anatomical parts, it is difficult for a purely intensity-based algorithm to solve the registration problem. Therefore, we propose to combine the resulting transformations from both intensity-based and landmark-based methods for multimodal non-rigid registration based on diffeomorphic demons. Several experiments on different types of MR images were conducted, for which we show that a better anatomical correspondence between the images can be obtained using the hybrid approach than using either intensity information or landmarks alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delayed fracture healing and non-unions represent rare but severe complications in orthopedic surgery. Further knowledge on the mechanisms of the bone repair process and of the development of a pseudoarthrosis is essential to predict and prevent impaired healing of fractures. The present study aimed at elucidating differences in gene expression during the repair of rigidly and non-rigidly fixed osteotomies. For this purpose, the MouseFix™ and the FlexiPlate™ systems (AO Development Institute, Davos, CH), allowing the creation of well defined osteotomies in mouse femora, were employed. A time course following the healing process of the osteotomy was performed and bones and periimplant tissues were analyzed by high-resolution X-ray, MicroCT and by histology. For the assessment of gene expression, Low Density Arrays (LDA) were done. In animals with rigid fixation, X-ray and MicroCT revealed healing of the osteotomy within 3 weeks. Using the FlexiPlate™ system, the osteotomy was still visible by X-ray after 3 weeks and a stabilizing cartilaginous callus was formed. After 4.5 weeks, the callus was remodeled and the osteotomy was, on a histological level, healed. Gene expression studies revealed levels of transcripts encoding proteins associated with inflammatory processes not to be altered in tissues from bones with rigid and non-rigid fixation, respectively. Levels of transcripts encoding proteins of the extracellular matrix and essential for bone cell functions were not increased in the rigidly fixed group when compared to controls without osteotomy. In the FlexiPlate™ group, levels of transcripts encoding the same set of genes were significantly increased 3 weeks after surgery. Expression of transcripts encoding BMPs and BMP antagonists was increased after 3 weeks in repair tissues from bones fixed with FlexiPlate™, as were inhibitors of the WNT signaling pathways. Little changes only were detected in transcript levels of tissues from rigidly fixed bones. The data of the present study suggest that rigid fixation enables accelerated healing of an experimental osteotomy as compared to non-rigid fixation. The changes in the healing process after non-rigid fixation are accompanied by an increase in the levels of transcripts encoding inhibitors of osteogenic pathways and, probably as a consequence, by temporal changes in bone matrix synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: There is evidence for the superiority of two-implant overdentures over complete dentures in the mandible. Various anchorage devices were used to provide stability to overdentures. The aim of the present study was to compare two designs of a rigid bar connecting two mandibular implants. MATERIALS AND METHODS: Completely edentulous patients received a new denture in the maxilla and an implant-supported overdenture in the mandible. They were randomly allocated to two groups (A or B) with regard to the bar design. A standard U-shaped bar (Dolder bar) was used connecting the two implants in a straight line. For comparison, precision attachments were soldered distal to the bar copings. Group A started the study with the standard bar (S-bar), while group B started with the attachment-bar (A-bar). After 3 months, they had to answer a questionnaire (visual analogue scale [VAS]); then the bar design was changed in both groups. After a period of another 3 months, the patients had to answer the same questions; then they had the choice to keep their preferred bar. Now the study period was extended to another year of observation, and the patients answered again the same questionnaire. In vivo force measurements were carried out with both bar types at the end of the test periods. The prosthetic maintenance service carried out during the 6-month period was recorded for both bar types in both groups. Statistical analysis as performed with the SPSS statistical package (SPSS Inc., Chicago, IL, USA). RESULTS: Satisfaction was high in both groups. Group B, who had entered the study with the attachment bar, gave slightly better ratings to this type for four items, while in group A, no differences were found. At the end of the 6-month comparison period, all but one patient wished to continue to wear the attachment bar. Prosthetic service was equal in groups A and B, but the total number of interventions is significantly higher in the attachment bar. Force patterns of maximum biting were similar in both bar designs, but exhibited significantly higher axial forces in the attachment bar. CONCLUSIONS: Both bar designs provide good retention and functional comfort. High stability appears to be an important factor for the patients' satisfaction and oral comfort. Rigid retention results in a higher force impact and appears to evoke the need for the retightening of occlusal screws, resulting in more maintenance service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The purpose of this systematic review was to evaluate relapse and its causes in bilateral sagittal split setback osteotomy with rigid internal fixation. MATERIALS AND METHODS: Literature research was done in databases such as PubMed, Ovid, the Cochrane Library, and Google Scholar Beta. From the original 488 articles identified, 14 articles were finally included. Only 5 studies were prospective and 9 retrospective. The range of postoperative study records was from 6 weeks to 12.7 years. RESULTS: The horizontal short-term relapse was between 9.9% and 62.1% at point B and between 15.7% and 91.3% at pogonion. Long-term relapse was between 14.9% and 28.0% at point B and between 11.5% and 25.4% at pogonion. CONCLUSIONS: Neither large increase nor decrease of relapse was seen when short-term values were compared with long-term. Bilateral sagittal split osteotomy for mandibular setback in combination with orthodontics is an effective treatment of skeletal Class III and a stable procedure in the short- and long-term. The etiology of relapse is multifactorial: the proper seating of the condyles, the amount of setback, the soft tissue and muscles, remaining growth and remodeling, and gender were identified. Age did not show any correlations. To obtain reliable scientific evidence, further short- and long-term research of bilateral sagittal split osteotomy setback with rigid internal fixation should exclude additional surgery, ie, genioplasty or maxillary surgery, and include correlation statistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-service hardened concrete pavement suffers from environmental loadings caused by curling and warping of the slab. Traditionally, these loadings are computed on the basis of treating the slab as an elastic material, and of evaluating separately the curling and warping components. This dissertation simulates temperature distribution and moisture distribution through the slabs by use of a developed numerical model that couples the heat transfer and moisture transport. The computation of environmental loadings treats the slab as an elastic-viscous material, which considers the relaxation behavior and Pickett effect of the concrete. The heat transfer model considers the impacts of solar radiation, wind speed, air temperature, pavement slab albedo, etc. on the pavement temperature distribution. This dissertation assesses the difference between documented models that aim to predict pavement temperature, highlighting their pros and cons. The moisture transport model is unique for the documented models; it mimics the wetting and drying events occurring at the slab surface. These events are estimated by a proposed statistical algorithm, which is verified by field rainfall data. Analysis of the predicted results examines on the roles of the local air RH (relative humidity), wind speed, rainy pattern in the moisture distribution through the slab. The findings reveal that seasonal air RH plays a decisive role on the slab‘s moisture distribution; but wind speed and its daily variation, daily RH variation, and seasonal rainfall pattern plays only a secondary role. This dissertation sheds light on the computation of environmental loadings that in-service pavement slabs suffer from. Analysis of the computed stresses centers on the stress relaxation near the surface, stress evolution after the curing ends, and the impact of construction season on the stress‘s magnitude. An unexpected finding is that the total environmental loadings at the cyclically-stable state divert from the thermal stresses. At such a state, the total stress at the daytime is roughly equal to the thermal stress; whereas the total stress during the nighttime is far greater than the thermal stress. An explanation for this phenomenon is that during the night hours, the decline of the slab‘s near-surface temperature leads to a drop of the near-surface RH. This RH drop results in contraction therein and develops additional tensile stresses. The dissertation thus argues that estimating the environmental loadings by solely computing the thermally-induced stresses may reach delusive results. It recommends that the total environmental loadings of in-service slabs should be estimated by a sophisticated model coupling both moisture component and temperature component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The purpose of this systematic review was to evaluate horizontal relapse and its causes in bilateral sagittal split advancement osteotomy (BSSO) with rigid internal fixation of different types. MATERIALS AND METHODS: A search of the literature was performed in the databases PubMed, Ovid, Cochrane Library, and Google Scholar Beta. From 488 articles identified, 24 articles were finally included. Six studies were prospective, and 18 were retrospective. The range of postoperative study records was 6 months to 12.7 years. RESULTS: The short-term relapse for bicortical screws was between 1.5% and 32.7%, for miniplates between 1.5% and 18.0%, and for bioresorbable bicortical screws between 10.4% and 17.4%, at point B. The long-term relapse for bicortical screws was between 2.0% and 50.3%, and for miniplates between 1.5% and 8.9%, at point B. CONCLUSIONS: BSSO for mandibular advancement is a good treatment option for skeletal Class II, but seems less stable than BSSO setback in the short and long terms. Bicortical screws of titanium, stainless steel, or bioresorbable material show little difference regarding skeletal stability compared with miniplates in the short term. A greater number of studies with larger skeletal long-term relapse rates were evident in patients treated with bicortical screws instead of miniplates. The etiology of relapse is multifactorial, involving the proper seating of the condyles, the amount of advancement, the soft tissue and muscles, the mandibular plane angle, the remaining growth and remodeling, the skill of the surgeon, and preoperative age. Patients with a low mandibular plane angle have increased vertical relapse, whereas patients with a high mandibular plane angle have more horizontal relapse. Advancements in the range of 6 to 7 mm or more predispose to horizontal relapse. To obtain reliable scientific evidence, further short-term and long-term research into BSSO advancement with rigid internal fixation should exclude additional surgery, ie, genioplasty or maxillary surgery, and include a prospective study or randomized clinical trial design with correlation statistics.