940 resultados para Riemann–Liouville Fractional Differentiation and Integration Operators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nervous system is the most complex organ in animals and the ordered interconnection of neurons is an essential prerequisite for normal behaviour. Neuronal connectivity requires controlled neuronal growth and differentiation. Neuronal growth essentially depends on the actin and microtubule cytoskeleton, and it has become increasingly clear, that crosslinking of these cytoskeletal fractions is a crucial regulatory process. The Drosophila Spectraplakin family member Short stop (Shot) is such a crosslinker and is crucial for several aspects of neuronal growth. Shot comprises various domains: An actin binding domain, a plakin-like domain, a rod domain, calcium responsive EF-hand motifs, a microtubule binding Gas2 domain, a GSR motif and a C-terminal EB1aff domain. Amongst other phenotypes, shot mutant animals exhibit severely reduced dendrites and neuromuscular junctions, the subcellular compartmentalisation of the transmembrane protein Fasciclin2 is affected, but it is also crucially required in other tissues, for example for the integrity of tendon cells, specialised epidermal cells which anchor muscles to the body wall. Despite these striking phenotypes, Shot function is little understood, and especially we do not understand how it can carry out functions as diverse as those described above. To bridge this gap, I capitalised on the genetic possibilities of the model system Drosophila melanogaster and carried out a structure-function analysis in different neurodevelopmental contexts and in tendon cells. To this end, I used targeted gene expression of existing and newly generated Shot deletion constructs in Drosophila embryos and larvae, analyses of different shot mutant alleles, and transfection of Shot constructs into S2 cells or cultured fibroblasts. My analyses reveal that a part of the Shot C-terminus is not essential in the nervous system but in tendon cells where it stabilises microtubules. The precise molecular mechanism underlying this activity is not yet elucidated but, based on the findings presented here, I have developed three alternative testable hypothesis. Thus, either binding of the microtubule plus-end tracking molecule EB1 through an EB1aff domain, microtubulebundling through a GSR rich motif or a combination of both may explain a context-specific requirement of the Shot C-terminus for tendon cell integrity. Furthermore, I find that the calcium binding EF-hand motif in Shot is exclusively required for a subset of neuronal functions of Shot but not in the epidermal tendon cells. These findings pave the way for complementary studies studying the impact of [Ca2+] on Shot function. Besides these differential requirements of Shot domains I find, that most Shot domains are required in the nervous system and tendon cells alike. Thus the microtubule Gas2 domain shows no context specific requirements and is equally essential in all analysed cellular contexts. Furthermore, I could demonstrate a partial requirement of the large spectrin-repeat rod domain of Shot in neuronal and epidermal contexts. I demonstrate that this domain is partially required in processes involving growth and/or tissue stability but dispensable for cellular processes where no mechanical stress resistance is required. In addition, I demonstrate that the CH1 domain a part of the N-terminal actin binding domain of Shot is only partially required for all analysed contexts. Thus, I conclude that Shot domains are functioning different in various cellular environments. In addition my study lays the base for future projects, such as the elucidation of Shot function in growth cones. Given the high degree of conservation between Shot and its mammalian orthologues MACF1/ACF7 and BPAG1, I believe that the findings presented in this study will contribute to the general understanding of spectraplakins across species borders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chondrocytes live isolated in the voluminous extracellular matrix of cartilage, which they secrete and is neither vascularized nor innervated. Nutrient and waste exchanges occur through diffusion leading to low oxygen tension around the cells. Consequently even normal cartilage under normal physiological conditions suffers from a poor reparative potential that predisposes to degenerative conditions, such as osteoarthritis of the joints, with significant clinical effects.rnOne of the key challenges in medicine is the structural and functional replacement of lost or damaged tissues. Current therapeutical approaches are to transplant cells, implant bioartificial tissues, and chemically induce regeneration at the site of the injury. None of them reproduces well the biological and biomechanical properties of hyaline cartilage.rnThis thesis investigates the re-differentiation of chondrocytes and the repair of cartilage mediated by signaling molecules, biomaterials, and factors provided in mixed cellular cultures (co-culture systems). As signaling molecules we have applied prostaglandin E2 (PGE2) and bone morphogenetic protein 1 (BMP-1) and we have transfected chondrocytes with BMP-1 expressing vectors. Our biomaterials have been hydrogels of type-I collagen and gelatin-based scaffolds designed to mimic the architecture and biochemistry of native cartilage and provide a suitable three-dimensional environment for the cells. We have brought chondrocytes to interact with osteosarcoma Cal 72 cells or with murine preosteoblastic KS483 cells, either in a cell-to-cell or in a paracrine manner.rnExogenous stimulation with PGE2 or BMP-1 did not improve the differentiation or the proliferation of human articular chondrocytes. BMP-1 induced chondrocytic de-differentiation in a dose-dependent manner. Prostaglandin stimulation from gelatin-based scaffolds (three-dimensional culture) showed a certain degree of chondrocyte re-differentiaton. Murine preosteoblastic KS483 cells had no beneficial effect on human articular chondrocytes jointly cultivated with them in hydrogels of type I collagen. Although the hydrogels provided the chondrocytes with a proper matrix in which the cells adopted their native morphology; additionally, the expression of chondrocytic proteoglycan increased in the co-cultures after two weeks. The co-culture of chondrocytes with osteoblast-like cells (in transwell systems) resulted in suppression of the regular de-differentiation program that passaged chondrocytes undergo when cultured in monolayers. Under these conditions, the extracellular matrix of the chondrocytes, rich in type-II collagen and aggrecan, was not transformed into the extracellular matrix characteristic of de-differentiated human articular chondrocytes, which is rich in type-I collagen and versican.rnThis thesis suggests novel strategies of tissue engineering for clinical attempts to improve cartilage repair. Since implants are prepared in vitro (ex-vivo) by expanding human articular chondrocytes (autologous or allogeneic), we conclude that it will be convenient to provide a proper three-dimensional support to the chondrocytes in culture, to supplement the culture medium with PGE2, and to stimulate chondrocytes with osteoblastic factors by cultivating them with osteoblasts.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Central to the process of osseointegration is the recruitment of mesenchymal progenitor cells to the healing site, their proliferation and differentiation to bone synthesising osteoblasts. The process is under the control of pro-inflammatory cytokines and growth factors. The aim of this study was to monitor these key stages of osseointegration and the signalling milieu during bone healing around implants placed in healthy and diabetic bone. Methods: Implants were placed into the sockets of incisors extracted from the mandibles of normal Wistar and diabetic Goto-Kakizaki rats. Mandibles 1-12 weeks post-insertion of the implant were examined by histochemistry and immunocytochemistry to localise the presence of Stro-1- positive mesenchymal progenitor cells, proliferating cellular nuclear antigen proliferative cells, osteopontin and osteocalcin, macrophages, pro-inflammatory cytokines interleukin (IL)-1 , IL-6, tumour necrosis factor (TNF)- and tumour growth factor (TGF)- 1. Image analysis provided a semi-quantification of positively expressing cells. Results: Histological staining identified a delay in the formation of mineralised bone around implants placed in diabetic animals. Within the diabetic bone, the migration of Stro-1 mesenchymal cells in the healing tissue appeared to be unaffected. However, in the diabetic healing bone, the onset of cell proliferation and osteoblast differentiation were delayed and subsequently prolonged compared with normal bone. Similar patterns of change were observed in diabetic bone for the presence of IL-1 , TNF- , macrophages and TGF- 1. Conclusion: The observed alterations in the extracellular presence of pro-inflammatory cytokines, macrophages and growth factors within diabetic tissues that correlate to changes in the signalling milieu, may affect the proliferation and differentiation of mesenchymal progenitor cells in the osseointegration process. To cite this article: Colombo JS, Balani D, Sloan AJ, St Crean J, Okazaki J, Waddington RJ. Delayed osteoblast differentiation and altered inflammatory response around implants placed in incisor sockets of type 2 diabetic rats Clin. Oral Impl. Res22, 2011; 578-586 doi: 10.1111/j.1600-0501.2010.01992.x.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen treatment exerts a protective effect on experimental autoimmune encephalomyelitis (EAE) and is under clinical trial for multiple sclerosis therapy. Estrogens have been suspected to protect from CNS autoimmunity through their capacity to exert anti-inflammatory as well as neuroprotective effects. Despite the obvious impacts of estrogens on the pathophysiology of multiple sclerosis and EAE, the dominant cellular target that orchestrates the anti-inflammatory effect of 17β-estradiol (E2) in EAE is still ill defined. Using conditional estrogen receptor (ER) α-deficient mice and bone marrow chimera experiments, we show that expression of ERα is critical in hematopoietic cells but not in endothelial ones to mediate the E2 inhibitory effect on Th1 and Th17 cell priming, resulting in EAE protection. Furthermore, using newly created cell type-specific ERα-deficient mice, we demonstrate that ERα is required in T lymphocytes, but neither in macrophages nor dendritic cells, for E2-mediated inhibition of Th1/Th17 cell differentiation and protection from EAE. Lastly, in absence of ERα in host nonhematopoietic tissues, we further show that ERα signaling in T cells is necessary and sufficient to mediate the inhibitory effect of E2 on EAE development. These data uncover T lymphocytes as a major and nonredundant cellular target responsible for the anti-inflammatory effects of E2 in Th17 cell-driven CNS autoimmunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor PU.1 is a master regulator of myeloid differentiation and function. On the other hand, only scarce information is available on PU.1-regulated genes involved in cell survival. We now identified the glycolytic enzyme hexokinase 3 (HK3), a gene with cytoprotective functions, as transcriptional target of PU.1. Interestingly, HK3 expression is highly associated with the myeloid lineage and was significantly decreased in acute myeloid leukemia patients compared with normal granulocytes. Moreover, HK3 expression was significantly lower in acute promyelocytic leukemia (APL) compared with non-APL patient samples. In line with the observations in primary APL patient samples, we observed significantly higher HK3 expression during neutrophil differentiation of APL cell lines. Moreover, knocking down PU.1 impaired HK3 induction during neutrophil differentiation. In vivo binding of PU.1 and PML-RARA to the HK3 promoter was found, and PML-RARA attenuated PU.1 activation of the HK3 promoter. Next, inhibiting HK3 in APL cell lines resulted in significantly reduced neutrophil differentiation and viability compared with control cells. Our findings strongly suggest that HK3 is: (1) directly activated by PU.1, (2) repressed by PML-RARA, and (3) functionally involved in neutrophil differentiation and cell viability of APL cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Farnesyltransferase Inhibitors (FTIs) are a class of drugs known to prevent the farnesylation and subsequent membrane attachment of a number of intracellular proteins. In various studies, the administration of FTIs has been found to play a role in the activation and development of T-cells in the immune system. FTIs have also been found to act as immunomodulators in delaying MHC-II mismatched skin allografts in mice. This study focuses on the effect of the FTI, ABT-100, on the differentiation and cytokine secretion of Th1 and Th2 helper T-cells in BALB/C mice to better understand which immune responses are targeted by FTIs. Splenocytes were isolated from BALB/C mice, skewed towards either a Th1 or a Th2 phenotype with the addition of cytokines, and treated with various concentrations of ABT-100. Splenocytes were also isolated and immediately cultured in the presence of ABT-100 to observe differentiation trends of helper T-cells. Cytokine production was measured using intracytoplasmic flow cytometry analysis. I found that ABT-100 treatment does not block Th1 or Th2 cell differentiation. Instead, ABT-100 treatment appears to affect cytokine production from effector T-cells. I found that ABT-100 causes a decrease in IFN-¿ production in mature Th1 cells yet does not affect IL-4 production in mature Th2 cells. This decrease in cytokine production as a result of ABT-100 treatments provides a potential mechanism for how ABT-100 works to delay MHC-II mismatched allograft rejection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The death-associated protein kinase 2 (DAPK2) belongs to a family of Ca(2+)/calmodulin-regulated serine/threonine kinases involved in apoptosis. During investigation of candidate genes operative in granulopoiesis, we identified DAPK2 as highly expressed. Subsequent investigations demonstrated particularly high DAPK2 expression in normal granulocytes compared with monocytes/macrophages and CD34(+) progenitor cells. Moreover, significantly increased DAPK2 mRNA levels were seen when cord blood CD34(+) cells were induced to differentiate toward neutrophils in tissue culture. In addition, all-trans retinoic acid (ATRA)-induced neutrophil differentiation of two leukemic cell lines, NB4 and U937, revealed significantly higher DAPK2 mRNA expression paralleled by protein induction. In contrast, during differentiation of CD34(+) and U937 cells toward monocytes/macrophages, DAPK2 mRNA levels remained low. In primary leukemia, low expression of DAPK2 was seen in acute myeloid leukemia samples, whereas chronic myeloid leukemia samples in chronic phase showed intermediate expression levels. Lentiviral vector-mediated expression of DAPK2 in NB4 cells enhanced, whereas small interfering RNA-mediated DAPK2 knockdown reduced ATRA-induced granulocytic differentiation, as evidenced by morphology and neutrophil stage-specific maturation genes, such as CD11b, G-CSF receptor, C/EBPepsilon, and lactoferrin. In summary, our findings implicate a role for DAPK2 in granulocyte maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded alpha1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecules are the smallest possible elements for electronic devices, with active elements for such devices typically a few Angstroms in footprint area. Owing to the possibility of producing ultrahigh density devices, tremendous effort has been invested in producing electronic junctions by using various types of molecules. The major issues for molecular electronics include (1) developing an effective scheme to connect molecules with the present micro- and nano-technology, (2) increasing the lifetime and stabilities of the devices, and (3) increasing their performance in comparison to the state-of-the-art devices. In this work, we attempt to use carbon nanotubes (CNTs) as the interconnecting nanoelectrodes between molecules and microelectrodes. The ultimate goal is to use two individual CNTs to sandwich molecules in a cross-bar configuration while having these CNTs connected with microelectrodes such that the junction displays the electronic character of the molecule chosen. We have successfully developed an effective scheme to connect molecules with CNTs, which is scalable to arrays of molecular electronic devices. To realize this far reaching goal, the following technical topics have been investigated. 1. Synthesis of multi-walled carbon nanotubes (MWCNTs) by thermal chemical vapor deposition (T-CVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques (Chapter 3). We have evaluated the potential use of tubular and bamboo-like MWCNTs grown by T-CVD and PE-CVD in terms of their structural properties. 2. Horizontal dispersion of MWCNTs with and without surfactants, and the integration of MWCNTs to microelectrodes using deposition by dielectrophoresis (DEP) (Chapter 4). We have systematically studied the use of surfactant molecules to disperse and horizontally align MWCNTs on substrates. In addition, DEP is shown to produce impurityfree placement of MWCNTs, forming connections between microelectrodes. We demonstrate the deposition density is tunable by both AC field strength and AC field frequency. 3. Etching of MWCNTs for the impurity-free nanoelectrodes (Chapter 5). We show that the residual Ni catalyst on MWCNTs can be removed by acid etching; the tip removal and collapsing of tubes into pyramids enhances the stability of field emission from the tube arrays. The acid-etching process can be used to functionalize the MWCNTs, which was used to make our initial CNT-nanoelectrode glucose sensors. Finally, lessons learned trying to perform spectroscopic analysis of the functionalized MWCNTs were vital for designing our final devices. 4. Molecular junction design and electrochemical synthesis of biphenyl molecules on carbon microelectrodes for all-carbon molecular devices (Chapter 6). Utilizing the experience gained on the work done so far, our final device design is described. We demonstrate the capability of preparing patterned glassy carbon films to serve as the bottom electrode in the new geometry. However, the molecular switching behavior of biphenyl was not observed by scanning tunneling microscopy (STM), mercury drop or fabricated glassy carbon/biphenyl/MWCNT junctions. Either the density of these molecules is not optimum for effective integration of devices using MWCNTs as the nanoelectrodes, or an electroactive contaminant was reduced instead of the ionic biphenyl species. 5. Self-assembly of octadecanethiol (ODT) molecules on gold microelectrodes for functional molecular devices (Chapter 7). We have realized an effective scheme to produce Au/ODT/MWCNT junctions by spanning MWCNTs across ODT-functionalized microelectrodes. A percentage of the resulting junctions retain the expected character of an ODT monolayer. While the process is not yet optimized, our successful junctions show that molecular electronic devices can be fabricated using simple processes such as photolithography, self-assembled monolayers and dielectrophoresis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent the largest pool of tissue macrophages in humans. As an adaptation to the local antigen- and bacteria-rich environment, intestinal macrophages exhibit several distinct phenotypic and functional characteristics. Notably, microbe-associated molecular pattern receptors, including the lipopolysaccharide (LPS) receptors CD14 and TLR4, and also the Fc receptors for IgA and IgG are absent on most intestinal macrophages under homeostatic conditions. Moreover, while macrophages in the intestinal mucosa are refractory to the induction of proinflammatory cytokine secretion, they still display potent phagocytic activity. These adaptations allow intestinal macrophages to comply with their main task, i.e., the efficient removal of microbes while maintaining local tissue homeostasis. In this paper, we review recent findings on the functional differentiation of monocyte subsets into distinct macrophage populations and on the phenotypic and functional adaptations that have evolved in intestinal macrophages in response to their antigen-rich environment. Furthermore, the involvement of intestinal macrophages in the pathogenesis of celiac disease and inflammatory bowel diseases is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor suppressor genes, such as p53, RB, the INK4-ARF family and PML, suppress malignant transformation by regulating cell cycle progression, ensuring the fidelity of DNA replication and chromosomal segregation, or by inducing apoptosis in response to potentially deleterious events. In myeloid leukemia, hematopoietic differentiation resulting from highly coordinated, stage-wise expression of myeloid transcription and soluble signaling factors is disrupted leading to a block in terminal differentiation and uncontrolled proliferation. This virtually always involves functional inactivation or genetic disruption of one or several tumor suppressor genes in order to circumvent their checkpoint control and apoptosis-inducing functions. Hence, reactivation of tumor suppressor gene function has therapeutic potential and can possibly enhance conventional cytotoxic chemotherapy. In this review, we focus on the role of different tumor suppressor genes in myeloid differentiation and leukemogenesis, and discuss implications for therapy.