992 resultados para Reticulum cell sarcoma.
Resumo:
The incidence of Kaposi's Sarcoma (KS) is high in South Africa but the impact of antiretroviral therapy (ART) is not well defined. We examined incidence and survival of KS in HIV-infected patients enrolled in South African ART programs. We analyzed data of three ART programs: Khayelitsha township and Tygerberg Hospital programs in Cape Town and Themba Lethu program in Johannesburg. We included patients aged >16 years. ART was defined as a regimen of at least three drugs. We estimated incidence rates of KS for patients on ART and not on ART. We calculated Cox models adjusted for age, sex and time-updated CD4 cell counts and HIV-1 RNA. A total of 18,254 patients (median age 34.5 years, 64% female, median CD4 cell count at enrolment 105 cells/μL) were included. During 37,488 person-years follow-up 162 patients developed KS. The incidence was 1,682/100,000 person-years (95% confidence interval [CI] 1,406-2,011) among patients not receiving ART and 138/100,000 person-years (95% CI 102-187) among patients on ART. The adjusted hazard ratio comparing time on ART with time not on ART was 0.19 (95% CI 0.13-0.28). Low CD4 cell counts (time-updated) and male sex were also associated with KS. Estimated survival of KS patients at one year was 72.2% (95% CI 64.9-80.2) and higher in men than in women. The incidence of KS is substantially lower on ART than not on ART. Timely initiation of ART is essential to prevent KS and KS-associated morbidity and mortality in South Africa and other regions in Africa with a high burden of HIV.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed and highly conserved RNA binding protein, has been linked to a variety of cellular processes from mRNA processing to DNA repair. However, the precise function of FUS is not well understood. Recently, mutations in the FUS gene have been identified in familial and sporadic patients of Amyotrophic Lateral Sclerosis, a fatal neurodegenerative disorder characterized by dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS that efficiently depletes the protein. In order to characterize this cell line, we have characterized the poly(A) fraction by RNA deep sequencing. Preliminary results show that FUS depletion affects both mRNA expression and alternative splicing. Upon FUS depletion 330 genes are downregulated and 81 are upregulated. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, we are currently characterizing how FUS depletion affects cell proliferation and survival. We find that the lack of FUS impairs cell proliferation but does not induce apoptosis. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.
Resumo:
INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.
Resumo:
PURPOSE: To identify programmed cell death (PCD) pathways involved in N-methyl-N-nitrosourea (MNU)-induced photoreceptor (PR) degeneration. METHODS: Adult C57BL/6 mice received a single MNU i.p. injection (60 mg/kg bodyweight), and were observed over a period of 7 days. Degeneration was visualized by H&E overview staining and electron microscopy. PR cell death was measured by quantifying TUNEL-positive cells in the outer nuclear layer (ONL). Activity measurements of key PCD enzymes (calpain, caspases) were used to identify the involved cell death pathways. Furthermore, the expression level of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), key players in endoplasmic reticulum (ER) stress-induced apoptosis, was analyzed using quantitative real-time PCR. RESULTS: A decrease in ONL thickness and the appearance of apoptotic PR nuclei could be detected beginning 3 days post-injection (PI). This was accompanied by an increase of TUNEL-positive cells. Significant upregulation of activated caspases (3, 9, 12) was found at different time periods after MNU injection. Additionally, several other players of nonconventional PCD pathways were also upregulated. Consequently, calpain activity increased in the ONL, with a maximum on day 7 PI and an upregulation of CHOP and GRP78 expression beginning on day 1 PI was found. CONCLUSIONS: The data indicate that regular apoptosis is the major cause of MNU-induced PR cell death. However, alternative PCD pathways, including ER stress and calpain activation, are also involved. Knowledge about the mechanisms involved in this mouse model of PR degeneration could facilitate the design of putative combinatory therapeutic approaches.
Resumo:
Treatment allocation by epidermal growth factor receptor mutation status is a new standard in patients with metastatic nonesmall-cell lung cancer. Yet, relatively few modern chemotherapy trials were conducted in patients characterized by epidermal growth factor receptor wild type. We describe the results of a multicenter phase II trial, testing in parallel 2 novel combination therapies, predefined molecular markers, and tumor rebiopsy at progression. Objective: The goal was to demonstrate that tailored therapy, according to tumor histology and epidermal growth factor receptor (EGFR) mutation status, and the introduction of novel drug combinations in the treatment of advanced nonesmall-cell lung cancer are promising for further investigation. Methods: We conducted a multicenter phase II trial with mandatory EGFR testing and 2 strata. Patients with EGFR wild type received 4 cycles of bevacizumab, pemetrexed, and cisplatin, followed by maintenance with bevacizumab and pemetrexed until progression. Patients with EGFR mutations received bevacizumab and erlotinib until progression. Patients had computed tomography scans every 6 weeks and repeat biopsy at progression. The primary end point was progression-free survival (PFS) ≥ 35% at 6 months in stratum EGFR wild type; 77 patients were required to reach a power of 90% with an alpha of 5%. Secondary end points were median PFS, overall survival, best overall response rate (ORR), and tolerability. Further biomarkers and biopsy at progression were also evaluated. Results: A total of 77 evaluable patients with EGFR wild type received an average of 9 cycles (range, 1-25). PFS at 6 months was 45.5%, median PFS was 6.9 months, overall survival was 12.1 months, and ORR was 62%. Kirsten rat sarcoma oncogene mutations and circulating vascular endothelial growth factor negatively correlated with survival, but thymidylate synthase expression did not. A total of 20 patients with EGFR mutations received an average of 16.
Resumo:
Endoplasmic reticulum (ER)-resident proteins are continually retrieved from the Golgi and returned to the ER by Lys-Asp-Glu-Leu (KDEL) receptors, which bind to an eponymous tetrapeptide motif at their substrate's C terminus. Mice and humans possess three paralogous KDEL receptors, but little is known about their functional redundancy, or if their mutation can be physiologically tolerated. Here, we present a recessive mouse missense allele of the prototypical mammalian KDEL receptor, KDEL ER protein retention receptor 1 (KDELR1). Kdelr1 homozygous mutants were mildly lymphopenic, as were mice with a CRISPR/Cas9-engineered frameshift allele. Lymphopenia was cell intrinsic and, in the case of T cells, was associated with reduced expression of the T-cell receptor (TCR) and increased expression of CD44, and could be partially corrected by an MHC class I-restricted TCR transgene. Antiviral immunity was also compromised, with Kdelr1 mutant mice unable to clear an otherwise self-limiting viral infection. These data reveal a nonredundant cellular function for KDELR1, upon which lymphocytes distinctly depend.
Resumo:
BACKGROUND Tubules and sheets of endoplasmic reticulum perform different functions and undergo inter-conversion during different stages of the cell cycle. Tubules are stabilized by curvature inducing resident proteins, but little is known about the mechanisms of endoplasmic reticulum sheet stabilization. Tethering of endoplasmic reticulum membranes to the cytoskeleton or to each other has been proposed as a plausible way of sheet stabilization. RESULTS Here, using fluorescence microscopy we show that the previously proposed mechanisms, such as membrane tethering via GFP-dimerization or coiled coil protein aggregation do not explain the formation of the calnexin-induced organized smooth endoplasmic reticulum membrane stacks. We also show that the LINC complex proteins known to serve a tethering function in the nuclear envelope are excluded from endoplasmic reticulum stacks. Finally, using cryo-electron microscopy of vitreous sections methodology that preserves cellular architecture in a hydrated, native-like state, we show that the sheet stacks are highly regular and may contain ordered arrays of macromolecular complexes. Some of these complexes decorate the cytosolic surface of the membranes, whereas others appear to span the width of the cytosolic or luminal space between the stacked sheets. CONCLUSION Our results provide evidence in favour of the hypothesis of endoplasmic reticulum sheet stabilization by intermembrane tethering.
Resumo:
myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.
Resumo:
The viral proteins synthesized by a Moloney murine sarcoma virus (Mo-MuSV) with a temperature-sensitive mutation in a function required for the maintenance of the transformed state (ts110) were examined. Normal rat kidney cells (NRK) were infected with the ts110 virus and a non-virus-producing cell clone, termed 6m2, was isolated. This cell clone had a malignant phenotype at 33(DEGREES), the permissive temperature, but changed to a normal phenotype at 39(DEGREES).^ Two viral proteins were detected in 6m2 cells. A 58,000 dalton protein (P58) was detected at both 33(DEGREES) and 39(DEGREES) and contained only core protein (gag) coded sequences. An 85,000 dalton protein (P85) was detected only at 33(DEGREES) and contained sequences of viral core proteins p15, pp12, and part of p30 as well as protein sequences attributed by peptide mapping to P23 and P38, two candidate viral mouse src (v-mos) gene products. These results provide good evidence that P85 is a gag-mos polyprotein. As expected for a functional mos-gene product, P85 synthesis preceded parameters characteristic of the transformed state, including changes in cell morphology, in the cytoplasmic microtubule complex (CMTC) and in the rate of hexose uptake.^ Other studies were conducted to ascertain the defect which prohibited the synthesis of P85 at 39(DEGREES), the non-permissive temperature. When 6m2 cells were treated with actinomycin D at 39(DEGREES) and shifted to 33(DEGREES), the cells were unable to synthesize P85, but P58 continued to be made. P85 mRNA, active at 33(DEGREES), continued to be translated for two to three hours after shifting to 39(DEGREES) as judged by pulse-labeling experiments. Virus harvested at 33(DEGREES) from ts110 MuSV producer cells packaged both P85 and P58 coding RNAs while virus harvested at 39(DEGREES) was deficient in the amount of P85 coding RNA. Agarose gel electrophoresis of 6m2 cellular RNA showed that RNA harvested at 33(DEGREES) contained the 4.0 and 3.5 kb RNAs. Similar experiments on cells maintained at 39(DEGREES) have detected only the 4.0 kb RNA, suggesting that the 3.5 kb RNA codes for P85. The defect appeared to be in the long term stability of the P85 coding RNA at 39(DEGREES), since, in shift-up experiments (33(DEGREES) (--->) 39(DEGREES)), P85 was translated for only three hours at 39(DEGREES), while P58 was synthesized for at least eight hours. However, at 33(DEGREES) in the presence of actinomycin D, the ratio of P85 and P58 synthesis at hourly intervals was similar throughout a 12 hour period. ^
Resumo:
Vasculogenesis is the process by which Endothelial Precursor Cells (EPCs) form a vasculature. This process has been traditionally regarded as an embryological process of vessel formation. However, as early as in the 60's the concept of postnatal vasculogenesis was introduced, with a strong resurface of this idea in recent years. Similarly, previous work on a mouse skin tumor model provided us with the grounds to consider the role of vasculogenesis during tumor formation. ^ We examined the contribution of donor bone marrow (BM)-derived cells to neovascularization in recipient nude mice with Ewing's sarcoma. Ewing's sarcoma is a primitive neuroectodermal tumor that most often affects children and young adults between 5 and 30 years of age. Despite multiple attempts to improve the efficacy of chemotherapy for the disease, the 2-year metastases-free survival rate for patients with Ewing's sarcoma has not improved over the past 15 years. New therapeutic approaches are therefore needed to reduce the mortality rate. ^ The contribution of BM endothelial precursor cells in the development of Ewing's sarcoma was examined using different strategies to track the donor-derived cells. Using a BMT model that takes advantage of MHC differences between donor and recipient mice, we have found that donor BM cells were involved in the formation of Ewing's sarcoma vasculature. ^ Cells responsible for this vasculogenesis activity may be located within the stem cell population of the murine BM. These stem cells would not only generate the hematopoietic lineage but they would also generate ECs. Bone marrow SP (Side Population) cells pertain to a subpopulation that can be identified using flow cytometric analysis of Hoechst 33342-stained BM. This population of cells has HSC activity. We have tested the ability of BM SP cells to contribute to vasculogenesis in Ewing's sarcoma using our MHC mismatched transplant model. Mice transplanted with SP cells developed tumor neovessels that were derived from the donor SP cells. Thus, SP cells not only replenished the hematopoietic system of the lethally irradiated mice, but also differentiated into a non-hematopoietic cell lineage and contributed to the formation of the tumor vasculature. ^ In summary, we have demonstrated that BM-derived cells are involved in the generation of the new vasculature during the growth of Ewing's sarcoma. The finding that vasculogenesis plays a role in Ewing's sarcoma development opens the possibility of using genetically modified BM-derived cells for the treatment of Ewing's sarcomas. ^
Resumo:
The tumor suppressor p16 is a negative regulator of the cell cycle, and acts by preventing the phosphorylation of RB, which in turn prevents the progression from G1 to S phase of the cell cycle. In addition to its role in the cell cycle, p16 may also be able to induce apoptosis in some tumors. Ewing's sarcoma, a pediatric cancer of the bone and soft tissue, was used to study the ability of p16 to induce apoptosis due to the fact that p16 is often deleted in Ewing's sarcoma tumors and may play a role in the oncogenesis or progression of this disease. The purpose of these studies was to determine whether introduction of p16 into Ewing's sarcoma cells would induce apoptosis. We infected the Ewing's sarcoma cell line TC71, which does not express p16, with adenovirus- p16 (Ad-p16). Ad-p16 infection led to the production of functional p16 as measured by the induction of G1 arrest. Ad-p16 infection induced as much as a 100% increase in G1 arrest compared to untreated cells. As measured by propidium iodide (PI) and Annexin V staining, Ad-p16 was able to induce apoptosis to levels 20–30 fold higher than controls. Furthermore, Ad-p16 infection led to loss of RB protein before apoptosis could be detected. The loss of RB protein was due to post-translational degradation of RB, which was inhibited by the addition of the proteasome inhibitors PS-341 and NPI-0052. Downregulation of RB with si-RNA sensitized cells to Ad-p16-induced apoptosis, indicating that RB protects from apoptosis in this model. This study shows that p16 leads to the degradation of RB by the ubiquitin/proteasome pathway, and that this degradation may be important for the induction of apoptosis. Given that RB may protect from apoptosis in some tumors, apoptosis-inducing therapies may be enhanced in tumors which have lost RB expression, or in which RB is artificially inactivated. ^
Resumo:
Previous studies have implicated Ca2+ fluxes in the control of apoptosis but their exact roles in regulating the process remain obscure. Because Ca2+ can serve as a signal for cytochrome c release from isolated mitochondria, we hypothesized that alterations in intracellular Ca2+ compartmentalization might serve as a release signal in whole cells undergoing apoptosis. Exposure of human PC-3 prostate adenocarcinoma cells to staurosporine or DNA damaging agent (doxorubicin) but not to anti-Fas antibody led to early release of Ca2+ from the endoplasmic reticulum and subsequent accumulation of Ca2+ within mitochondria. Both events were blocked in cells stably transfected with Bcl-2 but were not affected by treatment with the pancaspase inhibitor, zVADfmk. The effects of staurosporine were associated with re-localization of Bax from the cytosol to both endoplasmic reticular and mitochondrial membranes. Neither ER Ca 2+ pool depletion nor mitochondrial Ca2+ uptake were observed in DU-145 cells that possess a frameshift mutation in the Bax gene unless wild-type Bax was restored via adenoviral gene transfer. Cytochrome c release and downstream features of apoptosis were attenuated by treatment with an inhibitor of mitochondria) Ca2+ uptake (RU-360). Although, direct pharmacological ER Ca2+ pool emptying in cells treated with thapsigargin did not lead to early cytochrome c release, pretreatment of cells with staurosporine dramatically sensitized mitochondria to thapsigargin-induced cytochrome c release. Together, our data demonstrate that ER-to-mitochondrial Ca2+ fluxes promote cytochrome c release and apoptosis in cells exposed to some (but not all) pro-apoptosic stimuli. ^
Resumo:
Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^
Resumo:
When subjected to increased workload, the heart responds metabolically by increasing its reliance on glucose and structurally by increasing the size of myocytes. Whether changes in metabolism regulate the structural remodeling process is unknown. A likely candidate for a link between metabolism and growth in the heart is the mammalian target of rapamycin (mTOR), which couples energy and nutrient metabolism to cell growth. Recently, sustained mTOR activation has also been implicated in the development of endoplasmic reticulum (ER) stress. We explored possible mechanisms by which acute metabolic changes in the hemodynamically stressed heart regulate mTOR activation, ER stress and cardiac function in the ex vivo isolated working rat heart. Doubling the heart’s workload acutely increased rates of glucose uptake beyond rates of glucose oxidation. The concomitant increase in glucose 6-phosphate (G6P) was associated with mTOR activation, endoplasmic reticulum (ER) stress and impaired contractile function. Both rapamycin and metformin restored glycolytic homeostasis, relieved ER stress and rescued contractile function. G6P and ER stress were also downregulated with mechanical unloading of failing human hearts. Taken together, the data support the hypothesis that metabolic remodeling precedes, triggers, and sustains structural remodeling of the heart and implicate a critical role for G6P in load-induced contractile dysfunction, mTOR activation and ER stress. In general terms, the intermediary metabolism of energy providing substrates provides signals for the onset and progression of hypertrophy and heart failure.
Resumo:
Targeting Histone deacetylases (HDAC) for the treatment of genetically complex soft tissue sarcoma Histone deactylase inhibitors (HDACi) are a new class of anticancer therapeutics; however, little is known about HDACi or the individual contribution of HDAC isoform activity in soft tissue sarcoma (STS). We investigated the potential efficacy of HDACi as monotherapy and in combination with chemotherapy in a panel of genetically complex STS. We found that HDACi combined with chemotherapy significantly induced anti-STS effects in vitro and in vivo. We then focused our study of HDACi in malignant peripheral nerve sheath tumor (MPNST), a subtype of highly aggressive, therapeutically resistant, and commonly fatal malignancies that occur in patients with neurofibromatosis type-1 (NF1) or sporadically. The therapeutic efficacy of HDACi was investigated in a panel of NF1-associated and sporadic MPNST cell lines. Our results demonstrate the NF1-assocaited cohort to be highly sensitive to HDACi while sporadic cell lines exhibited resistance. HDACi-induced productive autophagy was found to be a mode of resistance and inhibiting HDACi-induced autophagy significantly induced pro-apoptotic effects of HDACi in vitro and in vivo. HDACs are not a single enzyme consisting of 11 currently known isoforms. HDACis used in these studies inhibit a variety of these isoforms, namely class I HDACs which include HDAC1, 2, 3, and 8. Recently, HDAC8-specific inhibitors (HDAC8i) have been created and tested in various cancer cell lines. Lastly, the potential therapeutic efficacy of HDAC8i was investigated in human (NF1-associated and sporadic) and NF1-associated murine-derived MPNST. HDAC8i abrogated cell growth in human and murine-derived MPNST cells. Similar to the pattern noticed with pan-HDACis NF1-associated cells, especially murine-derived, were more sensitive to HDAC8i compared to human sporadic MPNST cell lines. S-phase arrest was observed in human and murine MPNST cells, independent of p53 mutational and NF1 status. HDAC8i induced apoptosis is all cell lines tested, with a more pronounced effects in human and murine-derived NF1-associated cells. Most importantly, HDAC8i abrogated murine-derived MPNST xenograft growth in vivo. Taken together, these findings support the evaluation of pan-HDACi and isoform-specific inhibitors as a novel therapy to treat MPNST, including in combination with autophagy blocking combination regimens in particular for patients with sporadic MPNST.