970 resultados para Retaining walls


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rammed-earth wall is a monolithic construction made by compacting processed soil in progressive layers in a rigid formwork. There is a growing interest in using this low-embodied-carbon building material in buildings. The paper investigates the strength and structural behavior of story-high cement-stabilized rammed-earth (CSRE) walls, reviews literature on the strength of CSRE, and discusses results of the compressive strength of CSRE prisms, wallettes, and story-high walls. The strength of the story-high wall was compared with the strength of wallettes and prisms. There is a nearly 30% reduction in strength as the height-to-thickness ratio increases from about 5 to 20. The ultimate compressive strength of CSRE walls predicted using the tangent modulus theory is in close agreement with the experimental values. The shear failures noticed in the story-high walls resemble the shear failures of short-height prism and wallette specimens. The paper ends with a discussion of structural design and characteristic compressive strength of CSRE walls. DOI: 10.1061/(ASCE)MT.1943-5533.0000155. (C) 2011 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breakout noise from HVAC ducts is important at low frequencies, and the coupling between the acoustic waves and the structural waves plays a critical role in the prediction of the transverse transmission loss. This paper describes the analytical calculation of breakout noise by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The first step in the breakout noise prediction is to calculate the inside duct pressure field and the normal duct wall vibration by using the solution of the governing differential equations in terms of Green's function. The resultant equations are rearranged in terms of impedance and mobility, which results in a compact matrix formulation. The Green's function selected for the current problem is the cavity Green's function with modification of wave number in the longitudinal direction in order to incorporate the terminal impedance. The second step is to calculate the radiated sound power from the compliant duct walls by means of an ``equivalent unfolded plate'' model. The transverse transmission loss from the duct walls is calculated using the ratio of the incident power due to surface source inside the duct to the acoustic power radiated from the compliant duct walls. Analytical results are validated with the FE-BE numerical models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arteries are heterogeneous, composite structures that undergo large cyclic deformations during blood transport. Presence, build-up and consequent rupture of blockages in blood vessels, called atherosclerotic plaques, lead to disruption in the blood flow that can eventually be fatal. Abnormal lipid profile and hypertension are the main risk factors for plaque progression. Treatments span from pharmacological methods, to minimally invasive balloon angioplasty and stent procedures, and finally to surgical alternatives. There is a need to understand arterial disease progression and devise methods to detect, control, treat and manage arterial disease through early intervention. Local delivery through drug eluting stents also provide an attractive option for maintaining vessel integrity and restoring blood flow while releasing controlled amount of drug to reduce and alleviate symptoms. Development of drug eluting stents is hence interesting albeit challenging because it requires an integration of knowledge of mechanical properties with material transport of drug through the arterial wall to produce a desired biochemical effect. Although experimental models are useful in studying such complex multivariate phenomena, numerical models of mass transport in the vessel have proved immensely useful to understand and delineate complex interactions between chemical species, physical parameters and biological variables. The goals of this review are to summarize literature based on studies of mass transport involving low density lipoproteins in the arterial wall. We also discuss numerical models of drug elution from stents in layered and porous arterial walls that provide a unique platform that can be exploited for the design of novel drug eluting stents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study focuses on probabilistic assessment of the internal seismic stability of reinforced soil structures (RSS) subjected to earthquake loading in the framework of the pseudo-dynamic method. In the literature, the pseudo-static approach has been used to compute reliability indices against the tension and pullout failure modes, and the real dynamic nature of earthquake accelerations cannot be considered. The work presented in this paper makes use of the horizontal and vertical sinusoidal accelerations, amplification of vibrations, shear wave and primary wave velocities and time period. This approach is applied to quantify the influence of the backfill properties, geosynthetic reinforcement and characteristics of earthquake ground motions on reliability indices in relation to the tension and pullout failure modes. Seismic reliability indices at different levels of geosynthetic layers are determined for different magnitudes of seismic acceleration, soil amplification, shear wave and primary wave velocities. The results are compared with the pseudo-static method, and the significance of the present methodology for designing reinforced soil structures is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional numerical study of natural convection in a vertical channel with flush-mounted discrete heaters on opposite conductive substrate walls is carried out in the present work. Detailed flow and heat transfer characteristics are presented for various Grashof numbers. The heat transfer effects on one wall by the presence of heaters on its opposite wall is examined. It is found that heat transfer rates on one wall are increased by the presence of heaters on its opposite wall. The thermal boundary layers on the opposite walls complement each other for enhanced heat transfer. The effects of spacing between the heated walls, spacings between heaters and substrate conductivity on flow and heat transfer are examined. Existence of optimum spacings between the heated walls for maximum heat transfer and mass flow are observed. It is found that the heat transfer and fluid flow do not follow the same optimum spacings. Mass flow rate reaches maximum value at a wall spacing greater than the spacing for maximum heat transfer. This is because the interaction of thermal boundary layers on individual walls ceases at a lower spacing before the velocity boundary layers separate each other. It is found that increased spacings between heaters reduce individual heater temperatures provided the heaters close to exit on both substrates avail sufficient substrate potions on the exit side. Insufficient substrate portions between the exit heaters and the exit cause abnormal local temperature rise in the exit heaters which are the hottest ones among all the heaters. Optimal heater spacings exist for minimum hottest heater temperature rise. Correlations are presented for dimensionless mass flow rate, temperature maximum, and average Nusselt number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new nanoscopic trigonal prisms, (tmen)6Pd6(H2L)3](NO3)12 (1), (Meen)6Pd6(H2L)3](NO3)12 (2), and (2,2'-bipy)6Pd6(H2L)3](NO3)12 (3), have been synthesized in excellent yields through single-step metalligand-coordination-driven self-assembly using 5,10,15,20-tetrakis(3-pyridyl)porphyrin (H2L) as a donor and cis-blocked PdII 90 degrees acceptors. These complexes were fully characterized by spectroscopic studies and single-crystal X-ray diffraction. All of these barrels quantitatively bind ZnII ions in the N4 pockets of the porphyrin walls at room temperature. Their corresponding zinc-embedded complexes, (tmen)6Pd6(ZnL)3](NO3)12 (1?a), (Meen)6Pd6(ZnL)3](NO3)12 (2?a), and (2,2'-bipy)6Pd6(ZnL)3](NO3)12 (3?a), were synthesized under ambient conditions by the post-synthetic binding of ZnII ions into the H2N4 pockets of the porphyrin walls of these complexes. These zinc-embedded complexes were characterized by electronic absorption, fluorescence emission, 1H NMR spectroscopy, as well as elemental analysis. Complexes 13 exhibited considerable microporosity in their solid state. Complex 1 was an efficient adsorbent for nitrogen gas and EtOH, MeOH, and water vapors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-component self-assembly of a 90 degrees PdII acceptor and a triimidazole donor led to the formation of a water-soluble semi-cylindrical cage with a hydrophobic cavity, which was separately crystallized with hydrophilic- and hydrophobic guests. The parent cage was found to catalyze the Knoevenagel condensation reaction of a series of aromatic mono-aldehydes with active methylene compounds, such as Meldrum's acid or 1,3-dimethylbarbituric acid. The confined hydrophobic nanospace within this cage was also used in the catalytic DielsAlder reactions of 9-hydroxymethylanthracene with N-phenylmaleimide or N-cyclohexylmaleimide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar forced convection of nanofluids in a vertical channel with symmetrically mounted rib heaters on surfaces of opposite walls is numerically studied. The fluid flow and heat transfer characteristics are examined for various Reynolds numbers and nanoparticles volume fractions of water-Al2O3 nanofluid. The flow exhibits various structures with varying Reynolds number. Even though the geometry and heating is symmetric with respect to a channel vertical mid-plane, asymmetric flow and heat transfer are found for Reynolds number greater than a critical value. Introduction of nanofluids in the base fluid delays the flow solution bifurcation point, and the critical Reynolds number increases with increasing nanoparticle volume fraction. A skin friction coefficient along the solid-fluid interfaces increases and decreases sharply along the bottom and top faces of the heaters, respectively, due to sudden acceleration and deceleration of the fluid at the respective faces. The skin friction coefficient, as well as Nusselt numbers in the channel, increase with increasing volume fraction of nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe here the rheological response of dense, slowly deforming granular materials to shear in a cylindrical Couette cell. All components of the stress on the outer cylinder are measured pointwise as a function of the depth, for different methods of construction of the bed that presumably lead to distinct fabrics. The static stress profiles for the different construction protocols are different, but a stress profile that is independent of construction history emerges when the granular column is sheared for sufficient time, in accord with the predictions of plasticity theories. However the qualitative features of the the stress profile under shear differs radically from the predictions of plasticity theories and data reported in earlier studies. We discuss a hypothesis for the anomalous stress profiles that was proposed recently by us, and the ways in which further experiments may to conducted to verify it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model free simulations are performed to study the effect of the presence of side wall in compressible mixing of two parallel dissimilar gaseous streams with significant temperature difference. The turbulence statistics shows the three dimensional nature of the flow with and without the presence of side walls. The presence of side wall neither makes the flow field two dimensional, nor suppresses three dimensional disturbances. However, the comparison of shear layer growth rate and wall pressures reveal a better match with the two dimensional simulation results. This better match is explained on the basis of formation of oblique structures due to the presence of side walls which also suppress the distribution of momentum in third direction making the pressures to be higher as compared with the case without side walls. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional natural convection in a horizontal channel with an array of discrete flush-mounted heaters on one of its vertical walls is numerically studied. Effects of thermal conductivities of substrate and heaters and convection on outer sides of the channel walls on heat transfer are examined. The substrate affects heat transfer in a wider range of thermal conductivities than do the heaters. At lower heater thermal conductivities a higher heat portion is transferred by direct convection from the heaters to the adjacent coolant. However, higher substrate conductivity is associated with higher heat portion transferred through the substrate. The innermost heater column is found to become the hottest heater column due to the lower coolant accessibility. The heat transfer in the channel is strongly influenced by convection on the outer sides of the channel walls. Correlations are presented for dimensionless temperature maximum and average Nusselt number.