967 resultados para Restauração sandwich
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
A quebra da harmonia do sorriso dos pacientes pode ser decorrente da redução da quantidade de mineral depositado, ocasionando um defeito qualitativo considerado como hipocalcificação2. A hipocalcificação de carácter adquirido local nos dentes anteriores é muito comum devido ao trauma ou lesão periapical nos dentes decíduos, que podem levar à alteração da formação dos germes dos dentes permanentes1. Essas anomalias podem se apresentar em diferentes tamanhos e profundidades e, por isso, os tratamentos a serem realizados variam desde os mais conservadores, como clareamento ou microabrasão, até os mais invasivos, como facetas indiretas ou coroas totais, além da associação desses tratamentos quando existir a necessidade. As alterações hipocalcificadas profundas que acometem toda espessura do esmalte e apresentam alteração de cor com comprometimento da estética, necessitam de desgaste e posterior restauração adesiva para estabelecer a estética dental. As resinas compostas vêm sendo amplamente utilizadas nesses casos devido às suas características óticas de translucides e opacidade, além das suas propriedades adesivas e mecânicas, como resistência, durabilidade, selamento marginal, manutenção da cor e lisura superficial. O caso apresentado é de um paciente do sexo masculino, 12 anos, que compareceu à clínica relatando insatisfação com a mancha presente no dente anterior. Após anamnese e exame clínico, constatou-se um comprometimento parcial da calcificação da face vestibular do incisivo central superior permanente (21) (hipocalcificação adquirida de caráter local)1. Após exame clínico e radiográfico, o tratamento proposto foi o restabelecimento da estética do elemento 21, que se encontrava com alteração de cor, através de desgaste do esmalte e restauração adesiva estética. Ao observar o aspecto final da restauração após o acabamento e polimento e o sorriso final do paciente, pôde-se comprovar o excelente resultado estético conseguido com o procedimento restaurador direto associado à muralha vestibular confeccionada com cimento provisório fotoativado.
Resumo:
O uso de plântulas da regeneração natural tem sido recomendado como estratégia para produção de mudas visando à restauração florestal, contudo muitos aspectos técnicos desse método ainda carecem de investigação científica. O objetivo deste trabalho foi avaliar o efeito da redução da área foliar e do transplantio imediato na sobrevivência e crescimento de mudas de espécies arbóreas produzidas a partir de plântulas obtidas da regeneração natural. Plântulas de Esenbeckia leiocarpa (Rutaceae), Eugenia ligustrina (Myrtaceae) e Maytenus salicifolia (Celastraceae), obtidas em remanescente de vegetação secundária de Floresta Estacional Semidecidual em Bofete, SP, foram extraídas do solo e submetidas aos tratamentos: I) redução de 50% da área de cada folha e transplantio imediato; II) nenhuma redução de área das folhas e transplantio imediato; III) redução de 50% da área de cada folha, manutenção das plântulas em água e transplantio 24 h após a coleta; e IV) nenhuma redução de área das folhas, manutenção das plântulas em água e transplantio 24 h após a coleta. As mudas foram avaliadas com relação à sobrevivência e ao crescimento em altura, ao longo de oito meses. Os resultados evidenciaram que nem o corte das folhas ou a manutenção das plântulas dentro de recipientes com água por 24 h antes do transplantio afetaram os parâmetros avaliados. Assim, para as espécies estudadas a redução da área foliar e o transplantio imediato são desnecessários para a produção de mudas em viveiro a partir de plântulas obtidas da regeneração natural.
Resumo:
Os microssítios de regeneração são caracterizados por diversas combinações de atributos que representam condições que influenciam a germinação de sementes e o estabelecimento de plântulas. O conhecimento desses atributos pode contribuir para a determinação de metodologias adequadas de manejo, visando ao restabelecimento dos processos ecológicos nas áreas em processo de restauração. Dessa forma, o objetivo deste trabalho foi caracterizar e diferenciar as condições físico-químicas de microssítios de regeneração de áreas em processo de restauração florestal, visando identificar possíveis limitações físicas e químicas ao estabelecimento de espécies arbóreas nativas no sub-bosque. O estudo foi desenvolvido em reflorestamentos de espécies nativas com diferentes idades (10, 22 e 55 anos). Foi realizada a avaliação do grau de compactação, porosidade, umidade, conteúdo de matéria orgânica e nutrientes e granulometria do solo, bem como a massa de matéria seca de serapilheira e a cobertura do dossel de cada área de estudo. Houve aumento da cobertura do dossel, da porosidade, da umidade, do conteúdo de argila, da matéria orgânica e de outros nutrientes, e uma diminuição da compactação do solo, com o aumento da idade da restauração. Assim, conclui-se que, com a evolução da restauração, as condições de microssítio de regeneração estão se assemelhando gradativamente às presentes nos ecossistemas de referência, sendo este um aspecto positivo para que o recrutamento de espécies nativas seja favorecido ao longo do tempo.
Resumo:
Il lavoro della tesi riguarda lo studio del comportamento di solai compositi, realizzati con tre strati di materiale. Questa metodologia costruttiva li fa ricadere nella tipologia strutturale del PANNELLO SANDWICH. Sono state condotte delle prove su campioni di materiali estratti da un provino di solaio, per determinare le caratteristiche meccaniche dei materiali stessi, poi sono state condotte le prove di carico su provini di solai integri, dai quali si sono ottenuti i diagrammi carico-spostamento. Successivamente sono state applicate due teorie sui pannelli sandwich, la teoria di Pantema e la teoria di Allen, allo scopo di vedere come riescano ad interpretare il comportamento sperimentale. Infine sono stati studiati i comportamenti agli SLE in termini di tensioni e frecce, e agli SLU in termini di capacità portante (taglio e momento flettente) secondo quanto dettato dal D.M. 14/01/2008.
Resumo:
INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.
Resumo:
Il presente lavoro di tesi è stato realizzato presso l’azienda M.A.G (Mecaer Aviation Group) s.p.a. nella sede presente a Monteprandone (AP) e descrive uno studio realizzato nell’ambito delle strutture in materiale composito. Lo scopo della tesi è la caratterizzazione meccanica di pannelli sandwich realizzati con strutture in composito non metallico. Nello specifico si vanno a determinare le caratteristiche meccaniche mediante la realizzazione di prove di resistenza su pannelli sandwich di diversa tipologia. I pannelli vengono realizzati per applicazioni secondarie, quali gli interni dell’elicottero dove l’utilizzo del composito ”classico” determina resistenza strutturale eccessiva rispetto alle reali necessità, in quanto il dimensionamento avviene per rigidezza, al fine di resistere alla vibrazioni presenti, invece che per robustezza. Il modo di vibrare del sandwich deve essere al di fuori del range di frequenza delle vibrazioni presenti nella struttura dell’elicottero. Si vuole verificare che il sacrificio di parte delle caratteristiche meccaniche sia contenuto entro certi limiti e sia giustificabile in termini di incremento del comfort acustico in cabina passeggeri.
Resumo:
In dieser Arbeit wurden Zellkulturen primärer Hepatozyten von Ratte und Mensch hinsichtlich ihrer Eignung untersucht Speziesunterschiede der toxischen Wirkung und des Metabolismus von Substanzen darzustellen und inwieweit die in vitro-Ergebnisse in vivo vergleichbar bzw. übertragbar sind. Des Weiteren wurde ein Zellkulturmodell entwickelt, das eine Kultivierung von primären Hepatozyten aus Ratte, Mensch und Maus über einen Zeitraum von mindestens einer bis zwei Wochen erlaubt.rnrnDie Zellkulturen primärer Hepatozyten von Ratte und Mensch zeigten deutliche Unterschiede in der substanzinduzierten Veränderung der Genexpression nach Behandlung mit den, vor allem für den Menschen, lebertoxischen Substanzen Diclofenac und Troglitazon. Diese Unterschiede traten hauptsächlich in der Induktion fremdstoffmetabolisierender Enzyme sowie deren transkriptionsregulierenden Kernrezeptoren in den humanen Hepatozyten auf. Ebenso war eine verstärkte Stressantwort zu beobachten.rnDeutliche Speziesunterschiede konnten ebenso in der Wirkung der Arzneimittelentwicklungssubstanz EMD 392949 auf die Aktivität bzw. Genexpression von Cytochrom P450 Enzymen sowie deren Regulatoren nachgewiesen werden. Des Weiteren konnte hier eine sehr gute Übereinstimmung der Ergebnisse aus den Zellkulturen primärer Ratten- bzw. Humanhepatozyten mit jenen aus in vivo-Experimenten mit Ratten bzw. Affen (Macaca fascicularis) beobachtet werden, was die Aussagekraft der Primärkulturen verdeutlichte.rnDie große Übereinstimmung zwischen Enzymaktivität und Genexpression in der Induktion fremdstoffmetabolisierender Enzyme konnte durch die Behandlung mit einer Reihe speziesspezifischer Induktoren in Zellkulturen primärer Ratten- bzw. Humanhepatozyten bestätigt werden; vor allem nach dem von der amerikanischen Arzneimittelzulassungsbehörde (FDA, Food and Drug Administartion) vorgeschlagenen Bewertungsschema zur Untersuchung der CYP-Induktion.rnrnDie Lebensdauer sowie der Differenzierungsgrad von primären Hepatozyten in Kultur sind stark abhängig von den Zellkulturbedingungen. Durch diese Arbeit konnte gezeigt werden, dass spezifische Eigenschaften von Rattenleberzellen durch Kultivierung in einem Sandwich aus zwei hydratisierten Collagengelschichten und unter serumfreien Bedingungen für einen Zeitraum von mindestens zwei Wochen aufrechterhalten werden können. Dieses Kulturmodel konnte auf Primärhepatozyten von Mensch und Maus übertragen werden und erweitert die möglichen Anwendungen hin zu einer Behandlung über einen längeren Zeitraum und der Untersuchung von subchronischen Effekten.rn