997 resultados para Relativistic nuclear models
Resumo:
We introduce a generalization of the relativistic eikonal amplitude originally developed to describe elastic scattering between structureless particles. The coherent and incoherent proton-nucleus scattering processes are analysed and closed-form expressions for elastic and inelastic amplitudes are derived. In particular, for the incoherent case, an energy-conserving version of Glauber's theory is obtained.
Resumo:
We calculate the contribution of relativistic dynamics on the neutron-deutron scattering length and triton binding energy employing five sets trinucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off- and on-shell variations of two- and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (C) 1994 Academic Press, Inc.
Resumo:
We study lepton pair production in heavy-ion collisions with emphasis on nonstandard contributions to the QED subprocess gamma-gamma --> l+l-. The existence of compositeness of fermions and/or bosons can be tested in this reaction up to the TeV mass scale. We show that for some processes the capabilities of relativistic heavy-ion colliders to disclose new physics surpass the possibilities of e+e- or ppBAR machines. In particular, spin-zero composite particles which couple predominantly to two photons, predicted in composite models, can be studied in a broad range of masses.
Resumo:
We show that all Green's functions of the Schwinger and axial models can be obtained one from the other. In particular, we show that the two models have the same chiral anomaly. Finally it is demonstrated that the Schwinger model can keep gauge invariance for an arbitrary mass, dispensing with an additional gauge group integration.
Resumo:
Binding energy differences of mirror nuclei for A = 15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. To fully include the effects of the polarization of the nuclear core due to the extra particle or hole, the spatial components of the vector meson fields and the photon are taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existency of the Okamoto-Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations, For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations.
Resumo:
In the quark model of the nucleon, the Fermi statistics of the elementary constituents can influence significantly the properties of multinucleon bound systems. In the Skyrme model, on the other hand, the basic quanta are bosons, so that qualitatively different statistics effects can be expected a priori. In order to illustrate this point, we construct schematic one-dimensional quark and soliton models which yield fermionic nucleons with identical baryon densities. We then compare the baryon densities of a two-nucleon bound state in both models. Whereas in the quark model the Pauli principle for quarks leads to a depletion of the density in the central region of the nucleus, the soliton model predicts a slight increase of the density in that region, due to the bosonic statistics of the meson-field quanta.
Resumo:
We suggest that pion and kaon interlerometry are complementary probes that help differentiate hadronic resonance gas from plasma dynamical models. We also discuss how interferometry could be used to test the presence of resonances at AGS energies. Finally, we study the A dependence of interferometry in the resonance model at 200 A GeV. © 1991.
Resumo:
The experimental mesonic density of states ρmeson(m)≃ρbaryon(m) from 0.9 to 1.3 GeV. In this region the ρmeson fits the ρ(m) deduced for it from discrete bag model states. Beyond 1.3 GeV one can expect exotic mesons. If ρmeson is replaced by the baryon density (as suggested by string model studies [D. Kutasov and N. Seiberg, Nucl. Phys. B 358 (1991) 600; P.G.O. Freund and J.L. Rosner, Phys. Rev. Lett. 68 (1992) 765]), agreement with theory is obtained up to 1.7 GeV. Beyond 1.7 GeV exotic baryons may be expected.
Resumo:
Invariance under non-linear Ŵ∞ algebra is shown for the two-boson Liouville type of model and its algebraic generalizations, the extended conformal Toda models. The realization of the corresponding generators in terms of two boson currents within KP hierarchy is presented.
Resumo:
We comment on the off-critical perturbations of WZNW models by a mass term as well as by another descendent operator, when we can compare the results with further algebra obtained from the Dirac quantization of the model, in such a way that a more general class of models be included. We discover, in both cases, hidden Kac-Moody algebras obeyed by some currents in the off-critical case, which in several cases are enough to completely fix the correlation functions.
Resumo:
It is shown that the affine Toda models (AT) constitute a gauge fixed version of the conformal affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota τ-functions are introduced and soliton solutions for the AT and CAT models associated to SL̂ (r+1) and SP̂ (r) are constructed.
Resumo:
We derive simple and physically transparent expressions for the contribution of the strong interaction to one-nucleon-removal processes in peripheral relativistic heavy-ion collisions. The coherent contribution, i.e., the excitation of a giant dipole resonance via meson exchange, is shown to be negligible as well as the interference between Coulomb and nuclear excitation. The incoherent nucleon-knockout contribution is also derived suggesting the nature of the nuclear interaction in this class of processes. We also justify the simple formulae used to fit the data of the E814 Collaboration. © 1995 Elseier Science B.V. All rights reserved.
Resumo:
We discuss a relativistic free particle with fractional spin in 2+1 dimensions, where the dual spin components satisfy the canonical angular momentum algebra {Sμ, Sν} = εμνγSγ. It is shown that it is a general consequence of these features that the Poincaré invariance is broken down to the Lorentz one, so indicating that it is not possible to keep simultaneously the free nature of the anyon and the translational invariance.
Resumo:
Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions.
Resumo:
The electromagnetic tensor for inclusive electron scattering off the pion Wμν for momentum transfers such that q+ = 0, (q+ = q0 + q3) is shown to obey a sum-rule for the component W++. From this sum-rule, one can define the quark-antiquark correlation function in the pion, which characterizes the transverse distance distribution between the quark and antiquark in the light-front pion wave-function. Within the realistic models of the relativistic pion wave function (including instanton vacuum inspired wave function) it is shown that the value of the two-quark correlation radius (rqq̄) is near twice the pion electromagnetic radius (rπ), where rπ ≈ 2/3 fm. We also define the correlation length lcorr where the two-particle correlation have an extremum. The estimation of lcorr ≈ 0.3-0,5 fm is very close to estimations from instanton models of QCD vacuum. It is also shown that the above correlation is very sensitive to the pion light-front wave-function models. © 1997 Elsevier Science B.V.