953 resultados para Relative Compactness
Resumo:
[Code]
Resumo:
Background: It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs). This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements.Results: Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. Conclusion: We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.
Resumo:
Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. UV irradiance is monitored via different techniques including ground measurements and satellite observations. However it is difficult to translate such observations into human UV exposure or dose because of confounding factors (shape of the exposed surface, shading, behavior, etc.) A collaboration between public health institutions, a meteorological office and an institute specialized in computing techniques developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop this tool, which estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. The radiation components are deduced from corresponding measurements of UV irradiance, and the related UV dose received by each triangle of the virtual manikin is computed accounting for shading by other body parts and eventual protection measures. The model was verified with dosimetric measurements (n=54) in field conditions using a foam manikin as surrogate for an exposed individual. Dosimetric results were compared to the model predictions. The model predicted exposure to solar UV adequately. The symmetric mean absolute percentage error was 13%. Half of the predictions were within 17% range of the measurements. This model allows assessing outdoor occupational and recreational UV exposures, without necessitating time-consuming individual dosimetry, with numerous potential uses in skin cancer prevention and research. Using this tool, we investigated solar UV exposure patterns with respect to the relative contribution of the direct, diffuse and reflected radiation. We assessed exposure doses for various body parts and exposure scenarios of a standing individual (static and dynamic postures). As input, the model used erythemally-weighted ground irradiance data measured in 2009 at Payerne, Switzerland. A year-round daily exposure (8 am to 5 pm) without protection was assumed. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose. Acute diffuse exposures were also obtained for cloudy summer days. The importance of diffuse UV radiation should not be underestimated when advocating preventive measures. Messages focused on avoiding acute direct exposures may be of limited efficiency to prevent skin cancers associated with chronic exposure (e.g., squamous cell carcinomas).
Resumo:
[Code]
Resumo:
Summary Background The dose-response between ultraviolet (UV) exposure patterns and skin cancer occurrence is not fully understood. Sun-protection messages often focus on acute exposure, implicitly assuming that direct UV radiation is the key contributor to the overall UV exposure. However, little is known about the relative contribution of the direct, diffuse and reflected radiation components. Objective To investigate solar UV exposure patterns at different body sites with respect to the relative contribution of the direct, diffuse and reflected radiation. Methods A three-dimensional numerical model was used to assess exposure doses for various body parts and exposure scenarios of a standing individual (static and dynamic postures). The model was fed with erythemally weighted ground irradiance data for the year 2009 in Payerne, Switzerland. A year-round daily exposure (08:00-17:00 h) without protection was assumed. Results For most anatomical sites, mean daily doses were high (typically 6·2-14·6 standard erythemal doses) and exceeded the recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15% to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose. Acute diffuse exposures were also observed during cloudy summer days. Conclusions The importance of diffuse UV radiation should not be underestimated when advocating preventive measures. Messages focused on avoiding acute direct exposures may be of limited efficiency to prevent skin cancers associated with chronic exposure.
Resumo:
Talouden kasvaessa myös tavarankuljetusmäärät kasvavat. Kuljetusjärjestelmät ja niiden sujuva toiminta on erittäin tärkeää taloudellisen kasvun kannalta tällä hetkellä, ja se tulee olemaan yhä tärkeämpää tulevaisuudessa. Tulevaisuudessa tarvitaan kokonaisvaltainen ja selkeästi tehokkaampi kuljetusjärjestelmä, mikäli tulevaisuuden kuljetusvirrat halutaan hoitaa kestävästi. Tässä opinnäytetyössäni tutkin kolmen eurooppalaisen kuljetusjärjestelmän (rautatiet, lentoliikenne ja konttiliikenne meritse) suhteellista teknistä tehokkuutta ja menetelmänä on data envelopment analysis (DEA). Vertailtaessa kuljetusjärjestelmiä löytyi suuria eroja kuljetusmuotojen välille. lentoyhtiöt suoriutuivat huomattavan tasaisesti eli tehokkaiden ja ei-tehokkaiden toimijoiden välillä ei ollut suuria eroja. Rautatiepuolella erot venyivät huomattavan suuriksi niin eri yritysten välillä kuin jopa saman yrityksen sisällä eri vuosina. Pikaisemmassa laivayhtiöiden tarkastelussa erot niiden välillä olivat lähes yhtä pieniä kuin lentoyhtiöiden välillä. Tarkasteltaessa omistajuuden vaikutusta lentoyhtiöiden toiminnassa huomattiin, että yksityisessä omistuksessa olevat yritykset olivat huomattavasti tehokkaampia matkustajien kuljettamisessa. Rahtipuolella merkittäviä eroja ei havaittu. Merkittävät korrelaatiot eri mallien välillä antoivat joitain viitteitä myös kuljetuspoliittiseen päätöksentekoon; investoinnit matkustajienkuljetuksiin raiteilla parantaisivat koko rautatiepuolen teokkuutta, mutta myös samalla lentopuolen matkustajakuljetuksen tehokkuutta.
Resumo:
The aim of the present study was to determinate the cycle length of spermatogenesis in three species of shrew, Suncus murinus, Sorex coronatus and Sorex minutus, and to assess the relative influence of variation in basal metabolic rate (BMR) and mating system (level of sperm competition) on the observed rate of spermatogenesis, including data of shrew species studied before (Sorex araneus, Crocidura russula and Neomys fodiens). The dynamics of sperm production were determined by tracing 5-bromodeoxyuridine in the DNA of germ cells. As a continuous scaling of mating systems is not evident, the level of sperm competition was evaluated by the significantly correlated relative testis size (RTS). The cycle durations estimated by linear regression were 14.3 days (RTS 0.3%) in Suncus murinus, 9.0 days (RTS 0.5%) in Sorex coronatus and 8.5 days (RTS 2.8%) in Sorex minutus. In regression and multiple regression analyses including all six studied species of shrew, cycle length was significantly correlated with BMR (r2=0.73) and RTS (r2=0.77). Sperm competition as an ultimate factor obviously leads to a reduction in the time of spermatogenesis in order to increase sperm production. BMR may act in the same way, independently or as a proximate factor, revealed by the covariation, but other factors (related to testes size and thus to mating system) may also be involved.
Resumo:
1. Species distribution models are increasingly used to address conservation questions, so their predictive capacity requires careful evaluation. Previous studies have shown how individual factors used in model construction can affect prediction. Although some factors probably have negligible effects compared to others, their relative effects are largely unknown. 2. We introduce a general "virtual ecologist" framework to study the relative importance of factors involved in the construction of species distribution models. 3. We illustrate the framework by examining the relative importance of five key factors-a missing covariate, spatial autocorrelation due to a dispersal process in presences/absences, sample size, sampling design and modeling technique-in a real study framework based on plants in a mountain landscape at regional scale, and show that, for the parameter values considered here, most of the variation in prediction accuracy is due to sample size and modeling technique. Contrary to repeatedly reported concerns, spatial autocorrelation has only comparatively small effects. 4. This study shows the importance of using a nested statistical framework to evaluate the relative effects of factors that may affect species distribution models.
Resumo:
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED.