994 resultados para Relational Quantum Mechanics
Resumo:
The paper argues that the formulation of quantum mechanics proposed by Ghirardi, Rimini and Weber (GRW) is a serious candidate for being a fundamental physical theory and explores its ontological commitments from this perspective. In particular, we propose to conceive of spatial superpositions of non-massless microsystems as dispositions or powers, more precisely propensities, to generate spontaneous localizations. We set out five reasons for this view, namely that (1) it provides for a clear sense in which quantum systems in entangled states possess properties even in the absence of definite values; (2) it vindicates objective, single-case probabilities; (3) it yields a clear transition from quantum to classical properties; (4) it enables to draw a clear distinction between purely mathematical and physical structures, and (5) it grounds the arrow of time in the time-irreversible manifestation of the propensities to localize.
Resumo:
The present article is devoted to Chemistry or Physics undergraduate students, given their difficulty to understand fundamental concepts and technical language used in atomic spectroscopy and quantum mechanics. An easy approach is shown in the treatment of the emission spectrum of the sodium atom without any involved calculations. In a previous article, the hydrogen spectrum was considered and the energy degeneracy of the angular momentum quantum number was observed. For the sodium spectrum, due to the valence electron penetration into internal shells, a breakdown of this degeneracy occurs and a dependence of this penetration on the angular momentum quantum number is observed. The eigenvalues are determined introducing the quantum defect correction (Rydberg correction) in the denominator of the Balmer equation, and the energy diagram is obtained. The intensity ratio for the observed doublets is explained by introducing new wave functions, containing the magnetic quantum number of the total angular momentum.
Resumo:
Iodine vapor is a very suitable substance to learn about molecular energy levels and transitions, and to introduce spectroscopic techniques. As a diatomic molecule its spectra are relatively simple and allow straightforward treatment of the data leading to the potential energy curves and to quantum mechanics concepts. The overtone bands, in the resonance Raman scattering, and the band progressions, in the electronic spectra, play an important role in the calculation of the Morse potential curves for the fundamental and excited electronic state. A weaker chemical bond in the electronic excited state, compared to the fundamental state, is evidenced by the increase in the equilibrium interatomic distance. The resonance Raman scattering of I2 is highlighted due to its importance for obtaining the anharmonicity constant in the fundamental electronic state.
Resumo:
The relationship between the magnetic dipole-dipole potential energy function and its quantum analogue is presented in this work. It is assumed the reader is familiar with the classical expression of the dipolar interaction and has basic knowledge of the quantum mechanics of angular momentum. Except for these two points only elementary steps are involved.
Resumo:
The year 2013 marks the centennial of that wondrous year in which Niels Bohr proposed a novel theory about the constitution of atoms and small molecules after which the way we regard atoms and their behaviour began to be drastically altered. Bohr drew on several sources for his original description of the atoms, most importantly on spectroscopy and Balmer's equation thereof, the new quantum hypothesis advanced a few years earlier by Planck, and the planetary atom proposed by Rutherford. Although Bohr's ideas were to be eventually overtaken by the advent of quantum mechanics, his theory was the basis of a new thinking about atoms and molecules which constitutes an invaluable asset in the development of science ever since.
Resumo:
We briefly investigated the well-known correlation of trihalomethanes, present in fresh water, with cancer hazard in humans. A transient alternative method of chemical simulation using Bäcklund Transformations and Quantum Mechanics is presented. Finally, the method was applied to simulate the interaction between Trichloridemethane and Alanine - as well as its amino and carboxyl groups.
Resumo:
This study proposes an activity to introduce scientific programming. In particular, the multidisciplinary concepts of scientific programming, quantum mechanics, and spectroscopy are presented in the study of the electronic spectrum of the I2 molecule. We use Python programming language and the IPython command shell, in particular, for their user friendliness and versatility.
Resumo:
The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schrödinger equation for a bidimensinal potential. This potential can be applied in several systems in physical and chemistry context , for instance, it can be used to study benzene molecule.
Resumo:
In this article I intend to show that certain aspects of A.N. Whitehead's philosophy of organism and especially his epochal theory of time, as mainly exposed in his well-known work Process and Reality, can serve in clarify the underlying assumptions that shape nonstandard mathematical theories as such and also as metatheories of quantum mechanics. Concerning the latter issue, I point to an already significant research on nonstandard versions of quantum mechanics; two of these approaches are chosen to be critically presented in relation to the scope of this work. The main point of the paper is that, insofar as we can refer a nonstandard mathematical entity to a kind of axiomatical formalization essentially 'codifying' an underlying mental process indescribable as such by analytic means, we can possibly apply certain principles of Whitehead's metaphysical scheme focused on the key notion of process which is generally conceived as the becoming of actual entities. This is done in the sense of a unifying approach to provide an interpretation of nonstandard mathematical theories as such and also, in their metatheoretical status, as a formalization of the empirical-experimental context of quantum mechanics.
Resumo:
A detailed theoretical investigation of the large amplitude motions in the S, excited electronic state of formic acid (HCOOH) was done. This study focussed on the the S, «- So electronic band system of formic acid (HCOOH). The torsion and wagging large amplitude motions of the S, were considered in detail. The potential surfaces were simulated using RHF/UHF ab-initio calculations for the two electronic states. The energy levels were evaluated by the variational method using free rotor basis functions for the torsional coordinates and harmonic oscillator basis functions for the wagging coordinates. The simulated spectrum was compared to the slit-jet-cooled fluorescence excitation spectrum allowing for the assignment of several vibronic bands. A rotational analysis of certain bands predicted that the individual bands are a mixture of rotational a, b and c-type components.The electronically allowed transition results in the c-type or Franck-Condon band and the electronically forbidden, but vibronically allowed transition creates the a/b-type or Herzberg-Teller components. The inversion splitting between these two band types differs for each band. The analysis was able to predict the ratio of the a, b and c-type components of each band.
Resumo:
Photosynthesis is a process in which electromagnetic radiation is converted into chemical energy. Photosystems capture photons with chromophores and transfer their energy to reaction centers using chromophores as a medium. In the reaction center, the excitation energy is used to perform chemical reactions. Knowledge of chromophore site energies is crucial to the understanding of excitation energy transfer pathways in photosystems and the ability to compute the site energies in a fast and accurate manner is mandatory for investigating how protein dynamics ef-fect the site energies and ultimately energy pathways with time. In this work we developed two software frameworks designed to optimize the calculations of chro-mophore site energies within a protein environment. The first is for performing quantum mechanical energy optimizations on molecules and the second is for com-puting site energies of chromophores in a fast and accurate manner using the polar-izability embedding method. The two frameworks allow for the fast and accurate calculation of chromophore site energies within proteins, ultimately allowing for the effect of protein dynamics on energy pathways to be studied. We use these frame-works to compute the site energies of the eight chromophores in the reaction center of photosystem II (PSII) using a 1.9 Å resolution x-ray structure of photosystem II. We compare our results to conflicting experimental data obtained from both isolat-ed intact PSII core preparations and the minimal reaction center preparation of PSII, and find our work more supportive of the former.