977 resultados para Regulated Membrane Aminopeptidase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distinct calcium profile is strongly implicated in regulating the multi-layered structure of the epidermis. However, the mechanisms that govern the regulation of this calcium profile are currently unclear. It clearly depends on the relatively impermeable barrier of the stratum corneum (passive regulation) but may also depend on calcium exchanges between keratinocytes and extracellular fluid (active regulation). Using a mathematical model that treats the viable sublayers of unwounded human and murine epidermis as porous media and assumes that their calcium profiles are passively regulated, we demonstrate that these profiles are also actively regulated. To obtain this result, we found that diffusion governs extracellular calcium motion in the viable epidermis and hence intracellular calcium is the main source of the epidermal calcium profile. Then, by comparison with experimental calcium profiles and combination with a hypothesised cell velocity distribution in the viable epidermis, we found that the net influx of calcium ions into keratinocytes from extracellular fluid may be constant and positive throughout the stratum basale and stratum spinosum, and that there is a net outflux of these ions in the stratum granulosum. Hence the calcium exchange between keratinocytes and extracellular fluid differs distinctly between the stratum granulosum and the underlying sublayers, and these differences actively regulate the epidermal calcium profile. Our results also indicate that plasma membrane dysfunction may be an early event during keratinocyte disintegration in the stratum granulosum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filtration membrane technology has already been employed to remove various organic effluents produced from the textile, paper, plastic, leather, food and mineral processing industries. To improve membrane efficiency and alleviate membrane fouling, an integrated approach is adopted that combines membrane filtration and photocatalysis technology. In this study, alumina nanofiber (AF) membranes with pore size of about 10 nm (determined by the liquid-liquid displacement method) have been synthesized through an in situ hydrothermal reaction, which permitted a large flux and achieved high selectivity. Silver nanoparticles (Ag NPs) are subsequently doped on the nanofibers of the membranes. Silver nanoparticles can strongly absorb visible light due to the surface plasmon resonance (SPR) effect, and thus induce photocatalytic degradation of organic dyes, including anionic, cationic and neutral dyes, under visible light irradiation. In this integrated system, the dyes are retained on the membrane surface, their concentration in the vicinity of the Ag NPs are high and thus can be efficiently decomposed. Meanwhile, the usual flux deterioration caused by the accumulation of the filtered dyes in the passage pores can be avoided. For example, when an aqueous solution containing methylene blue is processed using an integrated membrane, a large flux of 200 L m-2 h-1 and a stable permeating selectivity of 85% were achieved. The combined photocatalysis and filtration function leads to superior performance of the integrated membranes, which have a potential to be used for the removal of organic pollutants in drinking water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In comparison to our knowledge of the recycling of adhesion receptors and actin assembly, exactly how the cell controls its surface membrane to form a lamellipodium during migration is poorly understood. Here, we show the recycling endosome membrane is incorporated into the leading edge of a migrating cell to expand lamellipodia membrane. We have identified the SNARE complex that is necessary for fusion of the recycling endosome with the cell surface, as consisting of the R-SNARE VAMP3 on the recycling endosome partnering with the surface Q-SNARE Stx4/SNAP23, which was found to translocate and accumulate on the leading edge of migrating cells. Increasing VAMP3-mediated fusion of the recycling endosome with the surface increased membrane ruffling, while inhibition of VAMP3-mediated fusion showed that incorporation of the recycling endosome is necessary for efficient lamellipodia formation. At the same time, insertion of this recycling endosome membrane also delivers its cargo integrin α5β1 to the cell surface. The loss of this extra membrane for lamellipodia expansion and delivery of cargo in cells resulted in macrophages with a diminished capacity to effectively migrate. Thus, the recycling endosome membrane is incorporated into the leading edge and this aids expansion of the lamellipodia and simultaneously delivers integrins necessary for efficient cell migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key function of activated macrophages is to secrete proinflammatory cytokines such as TNF; however, the intracellular pathway and machinery responsible for cytokine trafficking and secretion is largely undefined. Here we show that individual SNARE proteins involved in vesicle docking and fusion are regulated at both gene and protein expression upon stimulation with the bacterial cell wall component lipopolysaccharide. Focusing on two intracellular SNARE proteins, Vti1b and syntaxin 6 (Stx6), we show that they are up-regulated in conjunction with increasing cytokine secretion in activated macrophages and that their levels are selectively titrated to accommodate the volume and timing of post-Golgi cytokine trafficking. In macrophages, Vti1b and syntaxin 6 are localized on intracellular membranes and are present on isolated Golgi membranes and on Golgi-derived TNF� vesicles budded in vitro. By immunoprecipitation, we find that Vti1b and syntaxin 6 interact to form a novel intracellular Q-SNARE complex. Functional studies using overexpression of full-length and truncated proteins show that both Vti1b and syntaxin 6 function and have rate-limiting roles in TNF� trafficking and secretion. This study shows how macrophages have uniquely adapted a novel Golgi-associated SNARE complex to accommodate their requirement for increased cytokine secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of caveolin-1 is up-regulated in prostate cancer metastasis and is associated with aggressive recurrence of the disease. Intriguingly, caveolin-1 is also secreted from prostate cancer cell lines and has been identified in secreted prostasomes. Caveolin-1 is the major structural component of the plasma membrane invaginations called caveolae. Co-expression of the coat protein Polymerase I and transcript release factor (PTRF) is required for caveolae formation. We recently found that expression of caveolin-1 in the aggressive prostate cancer cell line PC-3 is not accompanied by PTRF, leading to noncaveolar caveolin-1 lipid rafts. Moreover, ectopic expression of PTRF in PC-3 cells sequesters caveolin-1 into caveolae. Here we quantitatively analyzed the effect of PTRF expression on the PC-3 proteome using stable isotope labeling by amino acids in culture and subcellular proteomics. We show that PTRF reduced the secretion of a subset of proteins including secreted proteases, cytokines, and growth regulatory proteins, partly via a reduction in prostasome secretion. To determine the cellular mechanism accounting for the observed reduction in secreted proteins we analyzed total membrane and the detergent-resistant membrane fractions. Our data show that PTRF expression selectively impaired the recruitment of actin cytoskeletal proteins to the detergent-resistant membrane, which correlated with altered cholesterol distribution in PC-3 cells expressing PTRF. Consistent with this, modulating cellular cholesterol altered the actin cytoskeleton and protein secretion in PC-3 cells. Intriguingly, several proteins that function in ER to Golgi trafficking were reduced by PTRF expression. Taken together, these results suggest that the noncaveolar caveolin-1 found in prostate cancer cells generates a lipid raft microenvironment that accentuates secretion pathways, possibly at the step of ER sorting/exit. Importantly, these effects could be modulated by PTRF expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kallikrein 14 (KLK14) has been proposed as a useful prognostic marker in prostate cancer, with expression reported to be associated with tumour characteristics such as higher stage and Gleason score. KLK14 tumour expression has also shown the potential to predict prostate cancer patients at risk of disease recurrence after radical prostatectomy. The KLKs are a remarkably hormone-responsive family of genes, although detailed studies of androgen regulation of KLK14 in prostate cancer have not been undertaken to date. Using in vitro studies, we have demonstrated that unlike many other prostatic KLK genes that are strictly androgen responsive, KLK14 is more broadly expressed and inversely androgen regulated in prostate cancer cells. Given these results and evidence that KLK14 may play a role in prostate cancer prognosis, we also investigated whether common genetic variants in the KLK14 locus are associated with risk and/or aggressiveness of prostate cancer in approximately 1200 prostate cancer cases and 1300 male controls. Of 41 single nucleotide polymorphisms assessed, three were associated with higher Gleason score (≥7): rs17728459 and rs4802765, both located upstream of KLK14, and rs35287116, which encodes a p.Gln33Arg substitution in the KLK14 signal peptide region. Our findings provide further support for KLK14 as a marker of prognosis in prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Epidermogenesis and epidermal wound healing are tightly regulated processes during which keratinocytes must migrate, proliferate and differentiate. Cell to cell adhesion is crucial to the initiation and regulation of these processes. CUB domain containing protein 1 (CDCP1) is a transmembrane glycoprotein that is differentially tyrosine phosphorylated during changes in cell adhesion and survival signalling and is expressed by keratinocytes in native human skin, as well as in primary cultures. Objectives: To investigate the expression of CDCP1 during epidermogenesis and its role in keratinocyte migration. Methods: We examined both human skin tissue and an in vitro three-dimensional human skin equivalent model to examine the expression of CDCP1 during epidermogenesis. To examine the role of CDCP1 in keratinocyte migration we used a function blocking anti-CDCP1 antibody and a real-time Transwell™ cell migration assay. Results: Immunohistochemical analysis indicated that in native human skin CDCP1 is expressed in the stratum basale and stratum spinosum. In contrast, during epidermogenesis in a 3-dimensional human skin equivalent model CDCP1 was expressed only in the stratum basale, with localization restricted to the cell-cell membrane. No expression was detected in basal keratinocytes that were in contact with the basement membrane. Further, an anti-CDCP1 function blocking antibody was shown to disrupt keratinocyte chemotactic migration in vitro. Conclusions: These findings delineate the expression of CDCP1 in human epidermal keratinocytes during epidermogenesis and demonstrate that CDCP1 is involved in keratinocyte migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critically ill patients receiving extracorporeal membrane oxygenation (ECMO) are often noted to have increased sedation requirements. However, data related to sedation in this complex group of patients is limited. The aim of our study was to characterise the sedation requirements in adult patients receiving ECMO for cardiorespiratory failure. A retrospective chart review was performed to collect sedation data for 30 consecutive patients who received venovenous or venoarterial ECMO between April 2009 and March 2011. To test for a difference in doses over time we used a regression model. The dose of midazolam received on ECMO support increased by an average of 18 mg per day (95% confidence interval 8, 29 mg, P=0.001), while the dose of morphine increased by 29 mg per day (95% confidence interval 4, 53 mg, P=0.021) The venovenous group received a daily midazolam dose that was 157 mg higher than the venoarterial group (95% confidence interval 53, 261 mg, P=0.005). We did not observe any significant increase in fentanyl doses over time (95% confidence interval 1269, 4337 µg, P=0.94). There is a significant increase in dose requirement for morphine and midazolam during ECMO. Patients on venovenous ECMO received higher sedative doses as compared to patients on venoarterial ECMO. Future research should focus on mechanisms behind these changes and also identify drugs that are most suitable for sedation during ECMO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Given the expanding scope of extracorporeal membrane oxygenation (ECMO) and its variable impact on drug pharmacokinetics as observed in neonatal studies, it is imperative that the effects of the device on the drugs commonly prescribed in the intensive care unit (ICU) are further investigated. Currently, there are no data to confirm the appropriateness of standard drug dosing in adult patients on ECMO. Ineffective drug regimens in these critically ill patients can seriously worsen patient outcomes. This study was designed to describe the pharmacokinetics of the commonly used antibiotic, analgesic and sedative drugs in adult patients receiving ECMO. METHODS: This is a multi-centre, open-label, descriptive pharmacokinetic (PK) study. Eligible patients will be adults treated with ECMO for severe cardiac and/or respiratory failure at five Intensive Care Units in Australia and New Zealand. Patients will receive the study drugs as part of their routine management. Blood samples will be taken from indwelling catheters to investigate plasma concentrations of several antibiotics (ceftriaxone, meropenem, vancomycin, ciprofloxacin, gentamicin, piperacillin-tazobactum, ticarcillin-clavulunate, linezolid, fluconazole, voriconazole, caspofungin, oseltamivir), sedatives and analgesics (midazolam, morphine, fentanyl, propofol, dexmedetomidine, thiopentone). The PK of each drug will be characterised to determine the variability of PK in these patients and to develop dosing guidelines for prescription during ECMO. DISCUSSION: The evidence-based dosing algorithms generated from this analysis can be evaluated in later clinical studies. This knowledge is vitally important for optimising pharmacotherapy in these most severely ill patients to maximise the opportunity for therapeutic success and minimise the risk of therapeutic failure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ghrelin is a multifunctional hormone, with roles in stimulating appetite and regulating energy balance, insulin secretion and glucose homeostasis. The ghrelin gene locus (GHRL) is highly complex and gives rise to a range of novel transcripts derived from alternative first exons and internally spliced exons. The wild-type transcript encodes a 117 amino acid preprohormone that is processed to yield the 28 amino acid peptide ghrelin. Here, we identified insulin-responsive transcription corresponding to cryptic exons in intron 2 of the human ghrelin gene. A transcript, termed in2c-ghrelin (intron 2-cryptic), was cloned from the testis and the LNCaP prostate cancer cell line. This transcript may encode an 83 AA preproghrelin isoform that codes for the ghrelin, but not obestatin. It is expressed in a limited number of normal tissues and in tumours of the prostate, testis, breast and ovary. Finally, we confirmed that in2c-ghrelin transcript expression, as well as the recently described in1-ghrelin transcript, is significantly upregulated by insulin in cultured prostate cancer cells. Metabolic syndrome and hyperinsulinaemia has been associated with prostate cancer risk and progression. This may be particularly significant after androgen deprivation therapy for prostate cancer, which induces hyperinsulinaemia, and this could contribute to castrate resistant prostate cancer growth. We have previously demonstrated that ghrelin stimulates prostate cancer cell line proliferation in vitro. This study is the first description of insulin regulation of a ghrelin transcript in cancer, and should provide further impetus for studies into the expression, regulation and function of ghrelin gene products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated relationships between SRL and EF in a sample of 254 school-aged adolescent males. Two hypotheses were tested: that self-reported measures of SRL and EF are closely related and that as different aspects of EF mature during adolescence, the corresponding components of SRL should also improve, leading to an age-related increase in the correlation between EF and SRL. Two self-report instruments were used: the strategies for self-regulated learning survey (SSRLS) and the behavioural rating instrument of executive function (BRIEF). Strong correlations between the measures of EF and SRL were found, especially in areas associated with metacognitive processes. Correlations between EF and SRL were found, with weaker correlations between behavioural regulation and SRL were found to be weaker for the younger participants in the sample while the relationship between EF and SRL appears to grow stronger during the initial years of high school even though self-reported levels of EF along with motivation for SRL and important components of SRL such as goal setting and planning were found to decrease with age. Decreasing levels of motivation for learning during adolescence are speculated to moderate the deployment of SRL and EF in a school context.