851 resultados para Refinement of (SOR1NM2)
Resumo:
A nanocomposite of nanometer-sized magnetic granular epsilon-FeXN embedded in a nonmagnetic amorphous boron nitride matrix was prepared by ball milling mixture of alpha-Fe and hexagonal boron nitride in argon atmosphere. The grain size of the epsilon-FeXN alloy was about 10-20 nm. The nitrogen concentration in the epsilon-FeXN alloy increases with extending milling time. Both thermodynamic calculation and the present experiment show that iron and nitrogen atoms have higher alloying driving force than iron and boron atoms. Analyses of thermodynamics and kinetics about formation of the epsilon-FeXN alloy suggested that the formation of the epsilon-FeXN alloy is related to amorphization of the hexagonal boron nitride and refinement of the alpha-Fe. II was found from the present experiment that a critical grain size of the alpha-Fe reacting with nitrogen in the amorphous boron nitride is about 8 nm.
Resumo:
The complex of (CH3Cp)2Yb . DME (DME = dimethoxyethane) has been synthesized by the reduction with metallic sodium of the corresponding chloride (CH3CP)2YbCl. (CH3CP)2Yb . DME crystallized from DME in the monoclinic space group Cm, with cell constants a = 11.068(3), b = 12.338(4), c = 12.479(4) angstrom; beta = 100.51(2)-degrees, V = 1675(l) angstrom3, and D0 = 1.66 g/cm3 for Z = 4. Least-squares refinement of 1420 unique observed reflections led to final R of 0.0487. This complex can be used as a catalyst for the polymerization of methyl methacrylate (MMA).
Resumo:
The reaction of GdCl3 with 1 equiv of NaC5Me5 generates a neutral complex C5Me5GdCl2(THF)3 and a novel complex {Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-2-Cl)3(mu-3-Cl)2}2.6THF whixh recrystallizes from THF in triclinic, the space group P1BAR with unit cell dimentions of a 12.183(4), b 13.638(6), c 17.883(7) angstrom, alpha-110.38(3), beta-94.04(3), gamma-99.44(3)-degrees, V 2721.20 angstrom-3 and D(calc) 1.43 g cm-3 for Z = 1. Least-squares refinement of 2170 observed reflections led to a final R value of 0.047. The title complex consists of two Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-3-Cl)3(mu-3-Cl)2 units bridged together via two mu-2-THF to Na coordination. Each Gd ion is surrounded by one C5Me5 ligand, two mu-3-Cl, two mu-2-Cl and one THF in a distorted octahedral arrangement with average Gd-C(ring) 2.686(33), Gd-mu-2-Cl 2.724(7), Gd-mu-3-Cl 2.832(8) and Gd-O 2.407(11) angstrom. The sodium ion coordinates to two bridging THF, two mu-2-Cl and two mu-3-Cl to form a distorted octahedron with average Na-mu-2-O, Na-mu-2-Cl and Na-mu-3-Cl of 2.411(21), 2.807(15) and 2.845(12) angstrom, respectively.
Resumo:
The healthcare industry is beginning to appreciate the benefits which can be obtained from using Mobile Health Systems (MHS) at the point-of-care. As a result, healthcare organisations are investing heavily in mobile health initiatives with the expectation that users will employ the system to enhance performance. Despite widespread endorsement and support for the implementation of MHS, empirical evidence surrounding the benefits of MHS remains to be fully established. For MHS to be truly valuable, it is argued that the technological tool be infused within healthcare practitioners work practices and used to its full potential in post-adoptive scenarios. Yet, there is a paucity of research focusing on the infusion of MHS by healthcare practitioners. In order to address this gap in the literature, the objective of this study is to explore the determinants and outcomes of MHS infusion by healthcare practitioners. This research study adopts a post-positivist theory building approach to MHS infusion. Existing literature is utilised to develop a conceptual model by which the research objective is explored. Employing a mixed-method approach, this conceptual model is first advanced through a case study in the UK whereby propositions established from the literature are refined into testable hypotheses. The final phase of this research study involves the collection of empirical data from a Canadian hospital which supports the refined model and its associated hypotheses. The results from both phases of data collection are employed to develop a model of MHS infusion. The study contributes to IS theory and practice by: (1) developing a model with six determinants (Availability, MHS Self-Efficacy, Time-Criticality, Habit, Technology Trust, and Task Behaviour) and individual performance-related outcomes of MHS infusion (Effectiveness, Efficiency, and Learning), (2) examining undocumented determinants and relationships, (3) identifying prerequisite conditions that both healthcare practitioners and organisations can employ to assist with MHS infusion, (4) developing a taxonomy that provides conceptual refinement of IT infusion, and (5) informing healthcare organisations and vendors as to the performance of MHS in post-adoptive scenarios.
Resumo:
Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.
Resumo:
In this paper, we discuss the problem of maintenance of a CBR system for retrieval of rotationally symmetric shapes. The special feature of this system is that similarity is derived primarily from graph matching algorithms. The special problem of such a system is that it does not operate on search indices that may be derived from single cases and then used for visualisation and principle component analyses. Rather, the system is built on a similarity metric defined directly over pairs of cases. The problems of efficiency, consistency, redundancy, completeness and correctness are discussed for such a system. Performance measures for the CBR system are given, and the results for trials of the system are presented. The competence of the current case-base is discussed, with reference to a representation of cases as points in an n-dimensional feature space, and a Gramian visualisation. A refinement of the case base is performed as a result of the competence analysis and the performance of the case-base before and after refinement is compared.
Resumo:
This paper describes research into retrieval based on 3-dimensional shapes for use in the metal casting industry. The purpose of the system is to advise a casting engineer on the design aspects of a new casting by reference to similar castings which have been prototyped and tested in the past. The key aspects of the system are the orientation of the shape within the mould, the positions of feeders and chills, and particular advice concerning special problems and solutions, and possible redesign. The main focus of this research is the effectiveness of similarity measures based on 3-dimensional shapes. The approach adopted here is to construct similarity measures based on a graphical representation deriving from a shape decomposition used extensively by experienced casting design engineers. The paper explains the graphical representation and discusses similarity measures based on it. Performance measures for the CBR system are given, and the results for trials of the system are presented. The competence of the current case-base is discussed, with reference to a representation of cases as points in an n-dimensional feature space, and its principal components visualization. A refinement of the case base is performed as a result of the competence analysis and the performance of the case-base before and after refinement is compared.
Resumo:
This paper describes work towards the deployment of flexible self-management into real-time embedded systems. A challenging project which focuses specifically on the development of a dynamic, adaptive automotive middleware is described, and the specific self-management requirements of this project are discussed. These requirements have been identified through the refinement of a wide-ranging set of use cases requiring context-sensitive behaviours. A sample of these use-cases is presented to illustrate the extent of the demands for self-management. The strategy that has been adopted to achieve self-management, based on the use of policies is presented. The embedded and real-time nature of the target system brings the constraints that dynamic adaptation capabilities must not require changes to the run-time code (except during hot update of complete binary modules), adaptation decisions must have low latency, and because the target platforms are resource-constrained the self-management mechanism have low resource requirements (especially in terms of processing and memory). Policy-based computing is thus and ideal candidate for achieving the self-management because the policy itself is loaded at run-time and can be replaced or changed in the future in the same way that a data file is loaded. Policies represent a relatively low complexity and low risk means of achieving self-management, with low run-time costs. Policies can be stored internally in ROM (such as default policies) as well as externally to the system. The architecture of a designed-for-purpose powerful yet lightweight policy library is described. A suitable evaluation platform, supporting the whole life-cycle of feasibility analysis, concept evaluation, development, rigorous testing and behavioural validation has been devised and is described.
Resumo:
G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands.
Resumo:
PURPOSE:
To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication.
METHODS AND MATERIALS:
Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator.
RESULTS:
Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the a-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response.
CONCLUSIONS:
These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.
Resumo:
The aim of this work is to determine the out-of-field survival of cells irradiated with either the primary field or scattered radiation in the presence and absence of intercellular communication following delivery of conformal, IMRT and VMAT treatment plans. Single beam, conformal, IMRT and VMAT plans were created to deliver 3 Gy to half the area of a T80 flask containing either DU-145 or AGO-1522 cells allowing intercellular communication between the in-and out-of-field cell populations. The same plans were delivered to a similar custom made phantom used to hold two T25 culture flasks, one flask in-field and one out-of-field to allow comparison of cell survival responses when intercellular communication is physically inhibited. Plans were created for the delivery of 8 Gy to the more radio-resistant DU-145 cells only in the presence and absence of intercellular communication. Cell survival was determined by clonogenic assay. In both cell lines, the out-of-field survival was not statistically different between delivery techniques for either cell line or dose. There was however, a statistically significant difference between survival out-of-field when intercellular communication was intact (single T80 culture flask) or inhibited (multiple T25 culture flasks) to in-field for all plans. No statistically significant difference was observed in-field with or without cellular communication to out-of-field for all plans. These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields when cellular communication between differentially irradiated cell populations is present. This data is further evidence that refinement of existing radiobiological models to include indirect cell killing effects is required.
Resumo:
SLPI (secretory leucoprotease inhibitor) and elafin represent the archetypal members of the WFDC [WAP (whey acidic protein) four disulfide core] family of proteins, and were originally characterized as protease inhibitors but have since been shown to possess a wider repertoire of activities. These functions include antimicrobial and immunomodulatory properties, suggesting that these proteins may play key roles in the innate immune response, and indicate the potential to develop some of these proteins as novel therapeutics. Susceptibility to host and bacterial protease cleavage may, however, limit the efficacy of recombinant protein therapies in diseases with a high protease burden such as CF (cystic fibrosis) lung disease. To overcome this problem, further refinement of the native proteins will be required to provide effective treatment strategies.
Resumo:
Retinitis pigmentosa (RP) is a devastating form of retinal degeneration, with significant social and professional consequences. Molecular genetic information is invaluable for an accurate clinical diagnosis of RP due to its high genetic and clinical heterogeneity. Using a gene capture panel that covers 163 of the currently known retinal disease genes, including 48 RP genes, we performed a comprehensive molecular screening in a collection of 123 RP unsettled probands from a wide variety of ethnic backgrounds, including 113 unrelated simplex and 10 autosomal recessive RP (arRP) cases. As a result, 61 mutations were identified in 45 probands, including 38 novel pathogenic alleles. Interestingly, we observed that phenotype and genotype were not in full agreement in 21 probands. Among them, eight probands were clinically reassessed, resulting in refinement of clinical diagnoses for six of these patients. Finally, recessive mutations in CLN3 were identified in five retinal degeneration patients, including four RP probands and one cone-rod dystrophy patient, suggesting that CLN3 is a novel non-syndromic retinal disease gene. Collectively, our results underscore that, due to the high molecular and clinical heterogeneity of RP, comprehensive screening of all retinal disease genes is effective in identifying novel pathogenic mutations and provides an opportunity to discover new genotype-phenotype correlations. Information gained from this genetic screening will directly aid in patient diagnosis, prognosis, and treatment, as well as allowing appropriate family planning and counseling.
Resumo:
Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction (EBSD) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. © 2009 Editorial Board of CHINA WELDING.
Resumo:
Ultrasonic consolidation (UC) uses high frequency (20-40KHz) mechanical vibrations to produce a solid-state metallurgical bond (weld) between metal foils. UC as a novel layered manufacturing technique is used in this research to embed reinforcing members such as silicon carbide fibers into the aluminium alloy 6061's matrices. It is known that UC induce volume and surface effect in the material it is acting on. Both effects are employed in embedding active/passive elements in the metal matrix. Whilst the process and the two effects are used and identified at macro level, what is happening at micro level is unknown and hardly studied. In this research we are investigating the phenomena occurring in the microstructure of the parts during UC process to obtain better understanding about how and why the process works. In this research, high-resolution electron backscatter diffraction is used to study the effects of the UC process on the evolution of microstructure in AA6061 with and without fibre elements. The inverse pole figures (IPF), pole figures (PF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analysed to find the effect of ultrasonic vibration and embedding fibre on the microstructure and texture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Additional plastic flow occurs around the fibre which leads to the fibre embedding. © 2008 Materials Research Society.