1000 resultados para Rede Neural


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência Florestal - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Processos automatizados, como a furação, podem melhorar com o uso de métodos de controle e supervisão, com destaque para sensores e redes neurais artificiais. Neste estudo, foram utilizados diferentes sensores instalados em máquina-ferramenta para o registro dos sinais de força de avanço, potência elétrica, aceleração e sinal acústico, durante a furação de corpos de prova compostos por uma liga de titânio seguida de uma liga de alumínio. Os sinais e os diâmetros dos furos medidos na furação das amostras foram utilizados no treinamento da rede neural artificial. Os erros foram apresentados e analisados. Os resultados demonstraram alta capacidade da rede em estimar o diâmetro do furo nas diferentes condições de usinagem com erros baixos e até mesmo desprezíveis para a maior parte das aplicações industriais, mostrando assim eficiência do método proposto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to typify, through physicochemical parameters, honey from Campos do Jordão’s microrregion, and verify how samples are grouped in accordance with the climatic production seasonality (summer and winter). It were assessed 30 samples of honey from beekeepers located in the cities of Monteiro Lobato, Campos do Jordão, Santo Antonio do Pinhal e São Bento do Sapucaí-SP, regarding both periods of honey production (November to February; July to September, during 2007 and 2008; n = 30). Samples were submitted to physicochemical analysis of total acidity, pH, humidity, water activity, density, aminoacids, ashes, color and electrical conductivity, identifying physicochemical standards of honey samples from both periods of production. Next, we carried out a cluster analysis of data using k-means algorithm, which grouped the samples into two classes (summer and winter). Thus, there was a supervised training of an Artificial Neural Network (ANN) using backpropagation algorithm. According to the analysis, the knowledge gained through the ANN classified the samples with 80% accuracy. It was observed that the ANNs have proved an effective tool to group samples of honey of the region of Campos do Jordao according to their physicochemical characteristics, depending on the different production periods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diferentes abordagens teóricas têm sido utilizadas em estudos de sistemas biomoleculares com o objetivo de contribuir com o tratamento de diversas doenças. Para a dor neuropática, por exemplo, o estudo de compostos que interagem com o receptor sigma-1 (Sig-1R) pode elucidar os principais fatores associados à atividade biológica dos mesmos. Nesse propósito, estudos de Relações Quantitativas Estrutura-Atividade (QSAR) utilizando os métodos de regressão por Mínimos Quadrados Parciais (PLS) e Rede Neural Artificial (ANN) foram aplicados a 64 antagonistas do Sig-1R pertencentes à classe de 1-arilpirazóis. Modelos PLS e ANN foram utilizados com o objetivo de descrever comportamentos lineares e não lineares, respectivamente, entre um conjunto de descritores e a atividade biológica dos compostos selecionados. O modelo PLS foi obtido com 51 compostos no conjunto treinamento e 13 compostos no conjunto teste (r² = 0,768, q² = 0,684 e r²teste = 0,785). Testes de leave-N-out, randomização da atividade biológica e detecção de outliers confirmaram a robustez e estabilidade dos modelos e mostraram que os mesmos não foram obtidos por correlações ao acaso. Modelos também foram gerados a partir da Rede Neural Artificial Perceptron de Multicamadas (MLP-ANN), sendo que a arquitetura 6-12-1, treinada com as funções de transferência tansig-tansig, apresentou a melhor resposta para a predição da atividade biológica dos compostos (r²treinamento = 0,891, r²validação = 0,852 e r²teste = 0,793). Outra abordagem foi utilizada para simular o ambiente de membranas sinápticas utilizando bicamadas lipídicas compostas por POPC, DOPE, POPS e colesterol. Os estudos de dinâmica molecular desenvolvidos mostraram que altas concentrações de colesterol induzem redução da área por lipídeo e difusão lateral e aumento na espessura da membrana e nos valores de parâmetro de ordem causados pelo ordenamento das cadeias acil dos fosfolipídeos. As bicamadas lipídicas obtidas podem ser usadas para simular interações entre lipídeos e pequenas moléculas ou proteínas contribuindo para as pesquisas associadas a doenças como Alzheimer e Parkinson. As abordagens usadas nessa tese são essenciais para o desenvolvimento de novas pesquisas em Química Medicinal Computacional.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os motores de indução trifásicos são os principais elementos de conversão de energia elétrica em mecânica motriz aplicados em vários setores produtivos. Identificar um defeito no motor em operação pode fornecer, antes que ele falhe, maior segurança no processo de tomada de decisão sobre a manutenção da máquina, redução de custos e aumento de disponibilidade. Nesta tese são apresentas inicialmente uma revisão bibliográfica e a metodologia geral para a reprodução dos defeitos nos motores e a aplicação da técnica de discretização dos sinais de correntes e tensões no domínio do tempo. É também desenvolvido um estudo comparativo entre métodos de classificação de padrões para a identificação de defeitos nestas máquinas, tais como: Naive Bayes, k-Nearest Neighbor, Support Vector Machine (Sequential Minimal Optimization), Rede Neural Artificial (Perceptron Multicamadas), Repeated Incremental Pruning to Produce Error Reduction e C4.5 Decision Tree. Também aplicou-se o conceito de Sistemas Multiagentes (SMA) para suportar a utilização de múltiplos métodos concorrentes de forma distribuída para reconhecimento de padrões de defeitos em rolamentos defeituosos, quebras nas barras da gaiola de esquilo do rotor e curto-circuito entre as bobinas do enrolamento do estator de motores de indução trifásicos. Complementarmente, algumas estratégias para a definição da severidade dos defeitos supracitados em motores foram exploradas, fazendo inclusive uma averiguação da influência do desequilíbrio de tensão na alimentação da máquina para a determinação destas anomalias. Os dados experimentais foram adquiridos por meio de uma bancada experimental em laboratório com motores de potência de 1 e 2 cv acionados diretamente na rede elétrica, operando em várias condições de desequilíbrio das tensões e variações da carga mecânica aplicada ao eixo do motor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta um sistema neural modular, que processa separadamente informações de contexto espacial e temporal, para a tarefa de reprodução de sequências temporais. Para o desenvolvimento do sistema neural foram considerados redes neurais recorrentes, modelos estocásticos, sistemas neurais modulares e processamento de informações de contexto. Em seguida, foram estudados três modelos com abordagens distintas para aprendizagem de seqüências temporais: uma rede neural parcialmente recorrente, um exemplo de sistema neural modular e um modelo estocástico utilizando a teoria de modelos markovianos escondidos. Com base nos estudos e modelos apresentados, esta pesquisa propõe um sistema formado por dois módulos sucessivos distintos. Uma rede de propagação direta (módulo estimador de contexto espacial) realiza o processamento de contexto espacial identificando a seqüência a ser reproduzida e fornecendo um protótipo do contexto para o segundo módulo. Este é formado por uma rede parcialmente recorrente (módulo de reprodução de sequências temporais) para aprender as informações de contexto temporal e reproduzir em suas saídas a seqüência identificada pelo módulo anterior. Para a finalidade mencionada, este mestrado utiliza a distribuição de Gibbs na saída do módulo para contexto espacial de forma que este forneça probabilidades de contexto espacial, indicando o grau de certeza do módulo e possibilitando a utilização de procedimentos especiais para os casos de dúvida. O sistema neural foi testado em conjuntos contendo trajetórias abertas, fechadas, e com diferentes situações de ambigüidade e complexidade. Duas situações distintas foram avaliadas: (a) capacidade do sistema em reproduzir trajetórias a partir de pontos iniciais treinados; e (b) capacidade de generalização do sistema reproduzindo trajetórias considerando pontos iniciais ou finais em situações não treinadas. A situação (b) é um problema de difícil ) solução em redes neurais devido à falta de contexto temporal, essencial na reprodução de seqüências. Foram realizados experimentos comparando o desempenho do sistema modular proposto com o de uma rede parcialmente recorrente operando sozinha e um sistema modular neural (TOTEM). Os resultados sugerem que o sistema proposto apresentou uma capacidade de generalização significamente melhor, sem que houvesse uma deterioração na capacidade de reproduzir seqüências treinadas. Esses resultados foram obtidos em sistema mais simples que o TOTEM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A teoria de Jean Piaget sobre o desenvolvimento da inteligência tem sido utilizada na área de inteligência computacional como inspiração para a proposição de modelos de agentes cognitivos. Embora os modelos propostos implementem aspectos básicos importantes da teoria de Piaget, como a estrutura do esquema cognitivo, não consideram o problema da fundamentação simbólica e, portanto, não se preocupam com os aspectos da teoria que levam à aquisição autônoma da semântica básica para a organização cognitiva do mundo externo, como é o caso da aquisição da noção de objeto. Neste trabalho apresentamos um modelo computacional de esquema cognitivo inspirado na teoria de Piaget sobre a inteligência sensório-motora que se desenvolve autonomamente construindo mecanismos por meio de princípios computacionais pautados pelo problema da fundamentação simbólica. O modelo de esquema proposto tem como base a classificação de situações sensório-motoras utilizadas para a percepção, captação e armazenamento das relações causais determiníscas de menor granularidade. Estas causalidades são então expandidas espaço-temporalmente por estruturas mais complexas que se utilizam das anteriores e que também são projetadas de forma a possibilitar que outras estruturas computacionais autônomas mais complexas se utilizem delas. O modelo proposto é implementado por uma rede neural artificial feed-forward cujos elementos da camada de saída se auto-organizam para gerar um grafo sensóriomotor objetivado. Alguns mecanismos computacionais já existentes na área de inteligência computacional foram modificados para se enquadrarem aos paradigmas de semântica nula e do desenvolvimento mental autônomo, tomados como base para lidar com o problema da fundamentação simbólica. O grafo sensório-motor auto-organizável que implementa um modelo de esquema inspirado na teoria de Piaget proposto neste trabalho, conjuntamente com os princípios computacionais utilizados para sua concepção caminha na direção da busca pelo desenvolvimento cognitivo artificial autônomo da noção de objeto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Valve stiction, or static friction, in control loops is a common problem in modern industrial processes. Recently, many studies have been developed to understand, reproduce and detect such problem, but quantification still remains a challenge. Since the valve position (mv) is normally unknown in an industrial process, the main challenge is to diagnose stiction knowing only the output signals of the process (pv) and the control signal (op). This paper presents an Artificial Neural Network approach in order to detect and quantify the amount of static friction using only the pv and op information. Different methods for preprocessing the training set of the neural network are presented. Those methods are based on the calculation of centroid and Fourier Transform. The proposal is validated using a simulated process and the results show a satisfactory measurement of stiction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work consists basically in the elaboration of an Artificial Neural Network (ANN) in order to model the composites materials’ behavior when submitted to fatigue loadings. The proposal is to develop and present a mixed model, which associate an analytical equation (Adam Equation) to the structure of the ANN. Given that the composites often shows a similar behavior when subject to float loadings, this equation aims to establish a pre-defined comparison pattern for a generic material, so that the ANN fit the behavior of another composite material to that pattern. In this way, the ANN did not need to fully learn the behavior of a determined material, because the Adam Equation would do the big part of the job. This model was used in two different network architectures, modular and perceptron, with the aim of analyze it efficiency in distinct structures. Beyond the different architectures, it was analyzed the answers generated from two sets of different data – with three and two SN curves. This model was also compared to the specialized literature results, which use a conventional structure of ANN. The results consist in analyze and compare some characteristics like generalization capacity, robustness and the Goodman Diagrams, developed by the networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work is to use algorithms known as Boltzmann Machine to rebuild and classify patterns as images. This algorithm has a similar structure to that of an Artificial Neural Network but network nodes have stochastic and probabilistic decisions. This work presents the theoretical framework of the main Artificial Neural Networks, General Boltzmann Machine algorithm and a variation of this algorithm known as Restricted Boltzmann Machine. Computer simulations are performed comparing algorithms Artificial Neural Network Backpropagation with these algorithms Boltzmann General Machine and Machine Restricted Boltzmann. Through computer simulations are analyzed executions times of the different described algorithms and bit hit percentage of trained patterns that are later reconstructed. Finally, they used binary images with and without noise in training Restricted Boltzmann Machine algorithm, these images are reconstructed and classified according to the bit hit percentage in the reconstruction of the images. The Boltzmann machine algorithms were able to classify patterns trained and showed excellent results in the reconstruction of the standards code faster runtime and thus can be used in applications such as image recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BARBOSA, André F. ; SOUZA, Bryan C. ; PEREIRA JUNIOR, Antônio ; MEDEIROS, Adelardo A. D.de, . Implementação de Classificador de Tarefas Mentais Baseado em EEG. In: CONGRESSO BRASILEIRO DE REDES NEURAIS, 9., 2009, Ouro Preto, MG. Anais... Ouro Preto, MG, 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BARBOSA, André F. ; SOUZA, Bryan C. ; PEREIRA JUNIOR, Antônio ; MEDEIROS, Adelardo A. D.de, . Implementação de Classificador de Tarefas Mentais Baseado em EEG. In: CONGRESSO BRASILEIRO DE REDES NEURAIS, 9., 2009, Ouro Preto, MG. Anais... Ouro Preto, MG, 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior