967 resultados para Recombinant Growth-hormone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The requirement for growth hormone (GH) secretion by the anterior pituitary gland in beef calves is demonstrated by a complete lack of long bone-growth and muscle accretion after hypophysectomy (surgical removal of the pituitary gland). When the connecting link (hypophyseal stalk) to the basal region (hypothalamus) of the brain is surgically severed, long bone growth and body weight gain are greatly limited compared with sham-operated controls. This limited growth results from obliteration of episodic GH secretion and reduced basal blood concentration of the hormone compared with sham-operated controls. Thus, the hypophyseal stalk-transected (HST) calf provides an appropriate model to determine mechanisms by which hypothalamic neuropeptides from the brain regulate GH secretion, and thereby growth in the young calf. Neuropeptides have been isolated and characterized in bovine hypothalamus that stimulate GH secretion (GH-releasing hormone [GHRH]) or factor [GHRF] and inhibit GH secretion (GH release-inhibiting hormone [GHRIH] or somatostatin [SRIH]). A dose of .067 micrograms of GHRF per kilogram of body weight injected intravenously in HST calves abruptly increased plasma GH concentration to 55 nanograms per milliliter from the control period mean of 5 nanograms per milliliter. HST calves then were infused intravenously with .033 and .067 microgram somatostatin per kilogram of body weight, during which a pulse injection of .067 microgram of GHRF was administered. GH increase was limited to 9 and 5 micrograms per kilogram body weight during the .033- and .067 microgram SRIH infusions after GHRF; no GH rebound was observed after the SRIH was discontinued. GHRF from humans contains 40 to 44 amino acids. Rat hypothalamic GHRF analogs containing 29 to 32 amino acids elicited dose-dependent GH peak release in these HST calves. In 1977, Bowers and Monomy isolated novel GH releasing peptides consisting of only six amino acids; they caused GH release by isolated pituitary cells in culture and acute GH release when administered intravenously. We recently have utilized a novel nonpeptidyl GH secretagogue of low molecular weight in the pig to determine its mechanisms of action within the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether the human growth hormone (HGH) response to catecholamine depletion differs between fully remitted patients with major depressive disorder and healthy control subjects. Fourteen unmedicated subjects with remitted major depressive disorder (RMDD) and 11 healthy control subjects underwent catecholamine depletion with oral α-methylparatyrosine (AMPT) in a randomized, placebo-controlled, double-blind crossover study. The main outcome measure was the serum level of HGH. The diagnosis × drug interaction for HGH serum concentration was significant (F₁,₂₃ = 7.66, P < 0.02). This interaction was attributable to the HGH level increasing after AMPT administration in the RMDD subjects but not in the healthy subjects. In the RMDD sample, the AMPT-induced increase in HGH concentration correlated inversely with AMPT-induced anxiety symptoms as assessed using the Beck Anxiety Inventory (r = -0.63, P < 0.02). There was a trend toward an inverse correlation of the AMPT-induced HGH concentration changes with AMPT-induced depressive symptoms as measured by the BDI (r = -0.53, P = 0.05). Following catecholamine depletion, the RMDD subjects were differentiated from control subjects by their HGH responses. This finding, together with the negative correlation between HGH response and AMPT-induced anxiety symptoms in RMDD subjects, suggests that AMPT administration results in a deeper nadir in central catecholaminergic transmission, as reflected by a greater disinhibition of HGH secretion, in RMDD subjects versus control subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human growth hormone (GH) causes a variety of physiological and metabolic effects in humans and plays a pivotal role in postnatal growth. In somatotroph cells of the anterior pituitary, GH is stored in concentrated forms in secretory granules to be rapidly released upon GH-releasing hormone stimulation. During the process of secretory granule biogenesis, self-association of GH occurs in the compartments of the early secretory pathway (endoplasmic reticulum and Golgi complex). Since this process is greatly facilitated by the presence of zinc ions, it is of importance to understand the potential role of zinc transporters that participate in the fine-tuning of zinc homeostasis and dynamics, particularly in the early secretory pathway. Thus, the role of zinc transporters in supplying the secretory pathway with the sufficient amount of zinc required for the biogenesis of GH-containing secretory granules is essential for normal secretion. This report, illustrated by a clinical case report on transient neonatal zinc deficiency, focuses on the role of zinc in GH storage in the secretory granules and highlights the role of specific zinc transporters in the early secretory pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human GH has two disulfide bridges linking Cys-53 to Cys-165 and Cys-182 to Cys-189. Although absence of the first disulfide bridge has been shown to affect the bioactivity of GH in transgenic mice, little is known of the importance of this bridge in mediating the GH/GH-receptor (GHR) interaction in humans. However, we have identified a missense mutation (G705C) in the GH1 gene of a Serbian patient. This mutation was found in the homozygous state and leads to the absence of the disulfide bridge Cys-53 to Cys-165. To study the impact of this mutation in vitro, GHR binding and Janus kinase (Jak)2/signal transducer and activator of transcription (Stat)5 activation experiments were performed, in which it was observed that at physiological concentrations (3-50 ng/ml) both GHR binding and Jak2/Stat5 signaling pathway activation were significantly reduced in the mutant GH-C53S, compared with wild-type (wt)-GH. Higher concentrations (400 ng/ml) were required for this mutant to elicit responses similar to wt-GH. These results demonstrate that the absence of the disulfide bridge Cys-53 to Cys-165 affects the binding affinity of GH for the GHR and subsequently the potency of GH to activate the Jak2/Stat5 signaling pathway. In conclusion, we have demonstrated that GH-C53S is a bioinactive GH at the physiological range and that the disulfide bridge Cys-53 to Cys-163 is required for mediating the biological effects of GH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Aggregation of growth hormone (GH) required for its proper storage in granules is facilitated by zinc (Zn(2+)) transported by specific zinc transporters in and out of the regulated secretory pathway. Slc30a5 (ZnT5) was reported to have the highest gene expression among all zinc transporters in primary mouse pituitary cells while ZnT5-null mice presented with abnormal bone development and impaired growth compared to wild-type counterparts. METHODS In vitro studies performed in GH3 cells, a rat pituitary cell line that endogenously produces rat GH (rGH), included analysis of: cytoplasmic Zn(2+) pool changes after altering rSlc30a5 expression (luciferase assay), rZnT5 association with different compartments of the regulated secretory pathway (confocal microscopy), and the rGH secretion after rSlc30a5 knock-down (Western blot). RESULTS Confocal microscopy demonstrated high co-localization of rZnT5 with ER and Golgi (early secretory pathway) while siRNA-mediated knock-down of rSlc30a5 gene expression led to a significant reduction in rGH secretion. Furthermore, altered expression of rSlc30a5 (knock-down/overexpression) evoked changes in the cytoplasmic Zn(2+) pool indicating its important role in mediating Zn(2+) influx into intracellular compartments of the regulated secretory pathway. CONCLUSION Taken together, these results suggest that ZnT5 might play an important role in regulated GH secretion that is much greater than previously anticipated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed at evaluating a peak oxygen uptake test as a simple diagnostic tool to assess growth-hormone deficiency (GHD) in adults. Based on the findings of multiple growth hormone (GH) samplings after the exercise, a single GH sample taken 15 min postexercise revealed high accuracy in the diagnosis of GHD in the present study. A standardized peak oxygen uptake test may, therefore, provide an accurate alternative to more invasive tests of GHD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replacement of growth hormone (GH) in patients suffering from GH deficiency (GHD) offers clinical benefits on body composition, exercise capacity, and skeletal integrity. However, GH replacement therapy (GHRT) is also associated with insulin resistance, but the mechanisms are incompletely understood. We demonstrate that in GH-deficient mice (growth hormone-releasing hormone receptor (Ghrhr)(lit/lit)), insulin resistance after GHRT involves the upregulation of the extracellular matrix (ECM) and the downregulation of microRNA miR-29a in skeletal muscle. Based on RNA deep sequencing of skeletal muscle from GH-treated Ghrhr(lit/lit) mice, we identified several upregulated genes as predicted miR-29a targets that are negative regulators of insulin signaling or profibrotic/proinflammatory components of the ECM. Using gain- and loss-of-function studies, five of these genes were confirmed as endogenous targets of miR-29a in human myotubes (PTEN, COL3A1, FSTL1, SERPINH1, SPARC). In addition, in human myotubes, IGF1, but not GH, downregulated miR-29a expression and upregulated COL3A1. These results were confirmed in a group of GH-deficient patients after 4 months of GHRT. Serum IGF1 increased, skeletal muscle miR-29a decreased, and miR-29a targets were upregulated in patients with a reduced insulin response (homeostatic model assessment of insulin resistance (HOMA-IR)) after GHRT. We conclude that miR-29a could contribute to the metabolic response of muscle tissue to GHRT by regulating ECM components and PTEN. miR-29a and its targets might be valuable biomarkers for muscle metabolism following GH replacement. KEY MESSAGES GHRT most significantly affects the ECM cluster in skeletal muscle from mice. GHRT downregulates miR-29a and upregulates miR-29a targets in skeletal muscle from mice. PTEN, COL3A1, FSTL1, SERPINH1, and SPARC are endogenous miR-29a targets in human myotubes. IGF1 decreases miR-29a levels in human myotubes. miR-29a and its targets are regulated during GHRT in skeletal muscle from humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS Controversies still exist regarding the evaluation of growth hormone deficiency (GHD) in childhood at the end of growth. The aim of this study was to describe the natural history of GHD in a pediatric cohort. METHODS This is a retrospective study of a cohort of pediatric patients with GHD. Cases of acquired GHD were excluded. Univariate logistic regression was used to identify predictors of GHD persisting into adulthood. RESULTS Among 63 identified patients, 47 (75%) had partial GHD at diagnosis, while 16 (25%) had complete GHD, including 5 with multiple pituitary hormone deficiencies. At final height, 50 patients underwent repeat stimulation testing; 28 (56%) recovered and 22 (44%) remained growth hormone (GH) deficient. Predictors of persisting GHD were: complete GHD at diagnosis (OR 10.1, 95% CI 2.4-42.1), pituitary stalk defect or ectopic pituitary gland on magnetic resonance imaging (OR 6.5, 95% CI 1.1-37.1), greater height gain during GH treatment (OR 1.8, 95% CI 1.0-3.3), and IGF-1 level <-2 standard deviation scores (SDS) following treatment cessation (OR 19.3, 95% CI 3.6-103.1). In the multivariate analysis, only IGF-1 level <-2 SDS (OR 13.3, 95% CI 2.3-77.3) and complete GHD (OR 6.3, 95% CI 1.2-32.8) were associated with the outcome. CONCLUSION At final height, 56% of adolescents with GHD had recovered. Complete GHD at diagnosis, low IGF-1 levels following retesting, and pituitary malformation were strong predictors of persistence of GHD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE In Europe, growth hormone (GH) treatment for children born small for gestational age (SGA) can only be initiated after 4 years of age. However, younger age at treatment initiation is a predictor of favourable response. To assess the effect of GH treatment on early growth and cognitive functioning in very young (<30 months), short-stature children born SGA. DESIGN A 2-year, randomized controlled, multicentre study (NCT00627523; EGN study), in which patients received either GH treatment or no treatment for 24 months. PATIENTS Children aged 19-29 months diagnosed as SGA at birth, and for whom sufficient early growth data were available, were eligible. Patients were randomized (1:1) to GH treatment (Genotropin(®) , Pfizer Inc.) at a dose of 0·035 mg/kg/day by subcutaneous injection, or no treatment. MEASUREMENTS The primary objective was to assess the change from baseline in height standard deviation score (SDS) after 24 months of GH treatment. RESULTS Change from baseline in height SDS was significantly greater in the GH treatment vs control group at both month 12 (1·03 vs 0·14) and month 24 (1·63 vs 0·43; both P < 0·001). Growth velocity SDS was significantly higher in the GH treatment vs control group at 12 months (P < 0·001), but not at 24 months. There was no significant difference in mental or psychomotor development indices between the two groups. CONCLUSIONS GH treatment for 24 months in very young short-stature children born SGA resulted in a significant increase in height SDS compared with no treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50-60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn't significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Growth hormone (GH) has a strong lipolytic action and its secretion is increased during exercise. Data on fuel metabolism and its hormonal regulation during prolonged exercise in patients with growth hormone deficiency (GHD) is scarce. This study aimed at evaluating the hormonal and metabolic response during aerobic exercise in GHD patients. DESIGN Ten patients with confirmed GHD and 10 healthy control individuals (CI) matched for age, sex, BMI, and waist performed a spiroergometric test to determine exercise capacity (VO2max). Throughout a subsequent 120-minute exercise on an ergometer at 50% of individual VO2max free fatty acids (FFA), glucose, GH, cortisol, catecholamines and insulin were measured. Additionally substrate oxidation assessed by indirect calorimetry was determined at begin and end of exercise. RESULTS Exercise capacity was lower in GHD compared to CI (VO2max 35.5±7.4 vs 41.5±5.5ml/min∗kg, p=0.05). GH area under the curve (AUC-GH), peak-GH and peak-FFA were lower in GHD patients during exercise compared to CI (AUC-GH 100±93.2 vs 908.6±623.7ng∗min/ml, p<0.001; peak-GH 1.5±1.53 vs 12.57±9.36ng/ml, p<0.001, peak-FFA 1.01±0.43 vs 1.51±0.56mmol/l, p=0.036, respectively). There were no significant differences for insulin, cortisol, catecholamines and glucose. Fat oxidation at the end of exercise was higher in CI compared to GHD patients (295.7±73.9 vs 187.82±103.8kcal/h, p=0.025). CONCLUSION A reduced availability of FFA during a 2-hour aerobic exercise and a reduced fat oxidation at the end of exercise may contribute to the decreased exercise capacity in GHD patients. Catecholamines and cortisol do not compensate for the lack of the lipolytic action of GH in patients with GHD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously have demonstrated that insulin and insulin-like growth factor-I (IGF-I) down-regulate growth hormone (GH) binding in osteoblasts by reducing the number of surface GH receptors (GHRs). The present study was undertaken to investigate the mechanism of GHR down-regulation. Treatment with 5 nM insulin or IGF-I for 18 hr significantly decreased surface GH binding to 26.4 ± 2.9% and 23.0 ± 2.7% of control (mean ± SE; P < 0.05), respectively. No corresponding reductions in the mRNA level and total cellular content of GHR were found, nor was the rate of receptor internalization affected. The effects on GHR translocation were assessed by measuring the reappearance of GH binding of whole cells after trypsinization to remove the surface receptors. GH binding of control cultures significantly increased (P < 0.05) over 2 hr after trypsinization, whereas no recovery of binding activity was detected in insulin and IGF-I-treated cultures, indicating that GHR translocation was impaired. Studies on the time course of GHR down-regulation revealed that surface GH binding was reduced significantly by 3-hr treatment (P ≤ 0.0005), whereas GHR translocation was completely abolished by 75–90 min with insulin and IGF-I. The inhibition of receptor translocation by insulin, but not IGF-I, was attenuated by wortmannin. In conclusion, insulin and IGF-I down-regulated GH binding in osteoblasts by acutely impairing GHR translocation, with their effects exerted through distinct postreceptor signaling pathways.