908 resultados para Reasoning under Uncertainty


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El proyecto geotécnico de columnas de grava tiene todas las incertidumbres asociadas a un proyecto geotécnico y además hay que considerar las incertidumbres inherentes a la compleja interacción entre el terreno y la columna, la puesta en obra de los materiales y el producto final conseguido. Este hecho es común a otros tratamientos del terreno cuyo objetivo sea, en general, la mejora “profunda”. Como los métodos de fiabilidad (v.gr., FORM, SORM, Monte Carlo, Simulación Direccional) dan respuesta a la incertidumbre de forma mucho más consistente y racional que el coeficiente de seguridad tradicional, ha surgido un interés reciente en la aplicación de técnicas de fiabilidad a la ingeniería geotécnica. Si bien la aplicación concreta al proyecto de técnicas de mejora del terreno no es tan extensa. En esta Tesis se han aplicado las técnicas de fiabilidad a algunos aspectos del proyecto de columnas de grava (estimación de asientos, tiempos de consolidación y aumento de la capacidad portante) con el objetivo de efectuar un análisis racional del proceso de diseño, considerando los efectos que tienen la incertidumbre y la variabilidad en la seguridad del proyecto, es decir, en la probabilidad de fallo. Para alcanzar este objetivo se ha utilizado un método analítico avanzado debido a Castro y Sagaseta (2009), que mejora notablemente la predicción de las variables involucradas en el diseño del tratamiento y su evolución temporal (consolidación). Se ha estudiado el problema del asiento (valor y tiempo de consolidación) en el contexto de la incertidumbre, analizando dos modos de fallo: i) el primer modo representa la situación en la que es posible finalizar la consolidación primaria, parcial o totalmente, del terreno mejorado antes de la ejecución de la estructura final, bien sea por un precarga o porque la carga se pueda aplicar gradualmente sin afectar a la estructura o instalación; y ii) por otra parte, el segundo modo de fallo implica que el terreno mejorado se carga desde el instante inicial con la estructura definitiva o instalación y se comprueba que el asiento final (transcurrida la consolidación primaria) sea lo suficientemente pequeño para que pueda considerarse admisible. Para trabajar con valores realistas de los parámetros geotécnicos, los datos se han obtenido de un terreno real mejorado con columnas de grava, consiguiendo, de esta forma, un análisis de fiabilidad más riguroso. La conclusión más importante, obtenida del análisis de este caso particular, es la necesidad de precargar el terreno mejorado con columnas de grava para conseguir que el asiento ocurra de forma anticipada antes de la aplicación de la carga correspondiente a la estructura definitiva. De otra forma la probabilidad de fallo es muy alta, incluso cuando el margen de seguridad determinista pudiera ser suficiente. En lo que respecta a la capacidad portante de las columnas, existen un buen número de métodos de cálculo y de ensayos de carga (tanto de campo como de laboratorio) que dan predicciones dispares del valor de la capacidad última de las columnas de grava. En las mallas indefinidas de columnas, los resultados del análisis de fiabilidad han confirmado las consideraciones teóricas y experimentales existentes relativas a que no se produce fallo por estabilidad, obteniéndose una probabilidad de fallo prácticamente nula para este modo de fallo. Sin embargo, cuando se analiza, en el contexto de la incertidumbre, la capacidad portante de pequeños grupos de columnas bajo zapatas se ha obtenido, para un caso con unos parámetros geotécnicos típicos, que la probabilidad de fallo es bastante alta, por encima de los umbrales normalmente admitidos para Estados Límite Últimos. Por último, el trabajo de recopilación sobre los métodos de cálculo y de ensayos de carga sobre la columna aislada ha permitido generar una base de datos suficientemente amplia como para abordar una actualización bayesiana de los métodos de cálculo de la columna de grava aislada. El marco bayesiano de actualización ha resultado de utilidad en la mejora de las predicciones de la capacidad última de carga de la columna, permitiendo “actualizar” los parámetros del modelo de cálculo a medida que se dispongan de ensayos de carga adicionales para un proyecto específico. Constituye una herramienta valiosa para la toma de decisiones en condiciones de incertidumbre ya que permite comparar el coste de los ensayos adicionales con el coste de una posible rotura y , en consecuencia, decidir si es procedente efectuar dichos ensayos. The geotechnical design of stone columns has all the uncertainties associated with a geotechnical project and those inherent to the complex interaction between the soil and the column, the installation of the materials and the characteristics of the final (as built) column must be considered. This is common to other soil treatments aimed, in general, to “deep” soil improvement. Since reliability methods (eg, FORM, SORM, Monte Carlo, Directional Simulation) deals with uncertainty in a much more consistent and rational way than the traditional safety factor, recent interest has arisen in the application of reliability techniques to geotechnical engineering. But the specific application of these techniques to soil improvement projects is not as extensive. In this thesis reliability techniques have been applied to some aspects of stone columns design (estimated settlements, consolidation times and increased bearing capacity) to make a rational analysis of the design process, considering the effects of uncertainty and variability on the safety of the project, i.e., on the probability of failure. To achieve this goal an advanced analytical method due to Castro and Sagaseta (2009), that significantly improves the prediction of the variables involved in the design of treatment and its temporal evolution (consolidation), has been employed. This thesis studies the problem of stone column settlement (amount and speed) in the context of uncertainty, analyzing two failure modes: i) the first mode represents the situation in which it is possible to cause primary consolidation, partial or total, of the improved ground prior to implementation of the final structure, either by a pre-load or because the load can be applied gradually or programmed without affecting the structure or installation; and ii) on the other hand, the second mode implies that the improved ground is loaded from the initial instant with the final structure or installation, expecting that the final settlement (elapsed primary consolidation) is small enough to be allowable. To work with realistic values of geotechnical parameters, data were obtained from a real soil improved with stone columns, hence producing a more rigorous reliability analysis. The most important conclusion obtained from the analysis of this particular case is the need to preload the stone columns-improved soil to make the settlement to occur before the application of the load corresponding to the final structure. Otherwise the probability of failure is very high, even when the deterministic safety margin would be sufficient. With respect to the bearing capacity of the columns, there are numerous methods of calculation and load tests (both for the field and the laboratory) giving different predictions of the ultimate capacity of stone columns. For indefinite columns grids, the results of reliability analysis confirmed the existing theoretical and experimental considerations that no failure occurs due to the stability failure mode, therefore resulting in a negligible probability of failure. However, when analyzed in the context of uncertainty (for a case with typical geotechnical parameters), results show that the probability of failure due to the bearing capacity failure mode of a group of columns is quite high, above thresholds usually admitted for Ultimate Limit States. Finally, the review of calculation methods and load tests results for isolated columns, has generated a large enough database, that allowed a subsequent Bayesian updating of the methods for calculating the bearing capacity of isolated stone columns. The Bayesian updating framework has been useful to improve the predictions of the ultimate load capacity of the column, allowing to "update" the parameters of the calculation model as additional load tests become available for a specific project. Moreover, it is a valuable tool for decision making under uncertainty since it is possible to compare the cost of further testing to the cost of a possible failure and therefore to decide whether it is appropriate to perform such tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the current uncertain context that affects both the world economy and the energy sector, with the rapid increase in the prices of oil and gas and the very unstable political situation that affects some of the largest raw materials’ producers, there is a need for developing efficient and powerful quantitative tools that allow to model and forecast fossil fuel prices, CO2 emission allowances prices as well as electricity prices. This will improve decision making for all the agents involved in energy issues. Although there are papers focused on modelling fossil fuel prices, CO2 prices and electricity prices, the literature is scarce on attempts to consider all of them together. This paper focuses on both building a multivariate model for the aforementioned prices and comparing its results with those of univariate ones, in terms of prediction accuracy (univariate and multivariate models are compared for a large span of days, all in the first 4 months in 2011) as well as extracting common features in the volatilities of the prices of all these relevant magnitudes. The common features in volatility are extracted by means of a conditionally heteroskedastic dynamic factor model which allows to solve the curse of dimensionality problem that commonly arises when estimating multivariate GARCH models. Additionally, the common volatility factors obtained are useful for improving the forecasting intervals and have a nice economical interpretation. Besides, the results obtained and methodology proposed can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El agua es un recurso cada vez más escaso y valioso. Por ello, los recursos hídricos disponibles deben asignarse de una forma eficiente entre los diferentes usos. El cambio climático aumentará la frecuencia y severidad de los eventos extremos, y podría incrementar la demanda de agua de los cultivos. El empleo de mecanismos flexibles de asignación de agua puede ser imprescindible para hacer frente a este aumento en la variabilidad del balance hídrico y para asegurar que los riesgos de suministro, y no solo los recursos, son compartidos de manera eficiente entre los usuarios. Los mercados de agua permiten la reasignación de los recursos hídricos, favoreciendo su transferencia desde los usos de menor a los de mayor valor. Diferentes tipos de mercados de agua se han establecido en diferentes partes del mundo, ayudando a los participantes a afrontar los problemas de escasez de agua en esas zonas. En España, los intercambios de agua están permitidos desde 1999, aunque la participación de los usuarios en el mercado ha sido limitada. Hay varios aspectos de los mercados de agua en España que deben mejorarse. Esta tesis, además de proponer una serie de cambios en el marco regulatorio, propone la introducción de contratos de opción de agua como una posible mejora. La principal ventaja de este tipo de contratos es la estabilidad legal e institucional que éstos proporcionan tanto a compradores como vendedores. Para apoyar esta propuesta, se han llevado a cabo diferentes análisis que muestran el potencial de los contratos de opción como herramienta de reducción del riesgo asociado a una oferta de agua inestable. La Cuenca del Segura (Sureste de España), la Cuenca del Tajo y el Acueducto Tajo- Segura han sido seleccionados como casos de estudio. Tres análisis distintos aplicados a dicha región se presentan en esta tesis: a) una evaluación de los contratos de opción como mecanismo para reducir los riesgos de disponibilidad de agua sufridos por los regantes en la Cuenca del Segura; b) un marco teórico para analizar las preferencias de los regantes por diferentes mecanismos de gestión del riesgo de disponibilidad de agua, su disposición a pagar por ellos y los precios aproximados de estos instrumentos (seguro de sequía y contratos de opción de agua); y c) una evaluación del papel de los contratos de opción en las decisiones de aprovisionamiento de agua de una comunidad de regantes ante una oferta de agua incierta. Los resultados muestran el potencial de reducción del riesgo de los contratos de opción para regantes en España, pero pueden ser extrapolados a otros sectores o regiones. Las principales conclusiones de esta tesis son: a) la agricultura será uno de los sectores más afectados por el cambio climático. Si los precios del agua aumentan, la rentabilidad de los cultivos puede caer hasta niveles negativos, lo que podría dar lugar al abandono de cultivos de regadío en algunas zonas de España. Las políticas de cambio climático y de agua deben estar estrechamente coordinadas para asegurar un uso de agua eficiente y la rentabilidad de la agricultura; b) aunque los mercados de agua han ayudado a algunos usuarios a afrontar problemas de disponibilidad del recurso en momentos de escasez, hay varios aspectos que deben mejorarse; c) es necesario desarrollar mercados de agua más flexibles y estables para garantizar una asignación eficiente de los recursos entre los usuarios de agua; d) los resultados muestran los beneficios derivados del establecimiento de un contrato de opción entre usuarios de agua del Tajo y del Segura para reducir el riesgo de disponibilidad de agua en la cuenca receptora; e) la disposición a pagar de los regantes por un contrato de opción de agua o un seguro de sequía hidrológica, que representa el valor que tienen estos mecanismos para aquellos usuarios de agua que se enfrentan a riesgos relacionados con la disponibilidad del recurso, es consistente con los resultados obtenidos en estudios previos y superior al precio de mercado de estos instrumentos, lo que favorece la viabilidad de estos mecanismos de gestión del riesgo ; y f) los contratos de opción podrían ayudar a optimizar las decisiones de aprovisionamiento de agua bajo incertidumbre, proporcionando más estabilidad y flexibilidad que los mercados temporales de agua. ABSTRACT Water is becoming increasingly scarce and valuable. Thus, existing water resources need to be efficiently allocated among users. Climate change is expected to increase the frequency and severity of extreme events, and it may also increase irrigated crops' water demand. The implementation of flexible allocation mechanisms could be essential to cope with this increased variability of the water balance and ensure that supply risks, and not only water resources, are also efficiently shared and managed. Water markets allow for the reallocation of water resources from low to high value uses. Different water trading mechanisms have been created in different parts of the world and have helped users to alleviate water scarcity problems in those areas. In Spain, water trading is allowed since 1999, although market activity has been limited. There are several issues in the Spanish water market that should be improved. This thesis, besides proposing several changes in the legislative framework, proposes the introduction of water option contracts as a potential improvement. The main advantage for both buyer and seller derived from an option contract is the institutional and legal stability it provides. To support this proposal, different analyses have been carried out that show the potential of option contracts as a risk reduction tool to manage water supply instability. The Segura Basin (Southeast Spain), the Tagus Basin and the Tagus-Segura inter-basin Transfer have been selected as the case study. Three different analyses applied to this region are presented in this thesis: a) an evaluation of option contracts as a mechanisms to reduce water supply availability risks in the Segura Basin; b) a theoretical framework for analyzing farmer’s preferences for different water supply risk management tools and farmers’ willingness to pay for them, together with the assessment of the prices of these mechanisms (drought insurance and water option contracts); and c) an evaluation of the role of option contracts in water procurement decisions under uncertainty. Results show the risk-reduction potential of option contracts for the agricultural sector in Spain, but these results can be extrapolated to other sectors or regions. The main conclusions of the thesis are: a) agriculture would be one of the most affected sectors by climate change. With higher water tariffs, crop’s profitability can drop to negative levels, which may result in the abandoning of the crop in many areas. Climate change and water policies must be closely coordinated to ensure efficient water use and crops’ profitability; b) although Spanish water markets have alleviated water availability problems for some users during water scarcity periods, there are several issues that should be improved; c) more flexible and stable water market mechanisms are needed to allocate water resources and water supply risks among competing users; d) results show the benefits derived from the establishment of an inter-basin option contract between water users in the Tagus and the Segura basins for reducing water supply availability risks in the recipient area; e) irrigators’ willingness to pay for option contracts or drought insurance, that represent the value that this kind of trading mechanisms has for water users facing water supply reliability problems, are consistent with results obtained in previous works and higher than the prices of this risk management tools, which shows the feasibility of these mechanisms; and f) option contracts would help to optimize water procurement decisions under uncertainty, providing more flexibility and stability than the spot market.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El conjunto eficiente en la Teoría de la Decisión Multicriterio juega un papel fundamental en los procesos de solución ya que es en este conjunto donde el decisor debe hacer su elección más preferida. Sin embargo, la generación de tal conjunto puede ser difícil, especialmente en problemas continuos y/o no lineales. El primer capítulo de esta memoria, es introductorio a la Decisión Multicriterio y en él se exponen aquellos conceptos y herramientas que se van a utilizar en desarrollos posteriores. El segundo capítulo estudia los problemas de Toma de Decisiones en ambiente de certidumbre. La herramienta básica y punto de partida es la función de valor vectorial que refleja imprecisión sobre las preferencias del decisor. Se propone una caracterización del conjunto de valor eficiente y diferentes aproximaciones con sus propiedades de encaje y convergencia. Varios algoritmos interactivos de solución complementan los desarrollos teóricos. El tercer capítulo está dedicado al caso de ambiente de incertidumbre. Tiene un desarrollo parcialmente paralelo al anterior y utiliza la función de utilidad vectorial como herramienta de modelización de preferencias del decisor. A partir de la consideración de las distribuciones simples se introduce la eficiencia en utilidad, su caracterización y aproximaciones, que posteriormente se extienden a los casos de distribuciones discretas y continuas. En el cuarto capítulo se estudia el problema en ambiente difuso, aunque de manera introductoria. Concluimos sugiriendo distintos problemas abiertos.---ABSTRACT---The efficient set of a Multicriteria Decicion-Making Problem plays a fundamental role in the solution process since the Decisión Maker's preferred choice should be in this set. However, the computation of that set may be difficult, specially in continuous and/or nonlinear problems. Chapter one introduces Multicriteria Decision-Making. We review basic concepts and tools for later developments. Chapter two studies Decision-Making problems under certainty. The basic tool is the vector valué function, which represents imprecisión in the DM's preferences. We propose a characterization of the valué efficient set and different approximations with nesting and convergence properties. Several interactive algorithms complement the theoretical results. We devote Chapter three to problems under uncertainty. The development is parallel to the former and uses vector utility functions to model the DM's preferences. We introduce utility efficiency for simple distributions, its characterization and some approximations, which we partially extend to discrete and continuous classes of distributions. Chapter four studies the problem under fuzziness, at an exploratory level. We conclude with several open problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As ações de maior liquidez do índice IBOVESPA, refletem o comportamento das ações de um modo geral, bem como a relação das variáveis macroeconômicas em seu comportamento e estão entre as mais negociadas no mercado de capitais brasileiro. Desta forma, pode-se entender que há reflexos de fatores que impactam as empresas de maior liquidez que definem o comportamento das variáveis macroeconômicas e que o inverso também é uma verdade, oscilações nos fatores macroeconômicos também afetam as ações de maior liquidez, como IPCA, PIB, SELIC e Taxa de Câmbio. O estudo propõe uma análise da relação existente entre variáveis macroeconômicas e o comportamento das ações de maior liquidez do índice IBOVESPA, corroborando com estudos que buscam entender a influência de fatores macroeconômicos sobre o preço de ações e contribuindo empiricamente com a formação de portfólios de investimento. O trabalho abrangeu o período de 2008 a 2014. Os resultados concluíram que a formação de carteiras, visando a proteção do capital investido, deve conter ativos com correlação negativa em relação às variáveis estudadas, o que torna possível a composição de uma carteira com risco reduzido.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comercialização de energia elétrica de fontes renováveis, ordinariamente, constitui-se uma atividade em que as operações são estruturadas sob condições de incerteza, por exemplo, em relação ao preço \"spot\" no mercado de curto prazo e a geração de energia dos empreendimentos. Deriva desse fato a busca dos agentes pela formulação de estratégias e utilização de ferramentais para auxiliá-los em suas tomadas de decisão, visando não somente o retorno financeiro, mas também à mitigação dos riscos envolvidos. Análises de investimentos em fontes renováveis compartilham de desafios similares. Na literatura, o estudo da tomada de decisão considerada ótima sob condições de incerteza se dá por meio da aplicação de técnicas de programação estocástica, que viabiliza a modelagem de problemas com variáveis randômicas e a obtenção de soluções racionais, de interesse para o investidor. Esses modelos permitem a incorporação de métricas de risco, como por exemplo, o Conditional Value-at-Risk, a fim de se obter soluções ótimas que ponderem a expectativa de resultado financeiro e o risco associado da operação, onde a aversão ao risco do agente torna-se um condicionante fundamental. O objetivo principal da Tese - sob a ótica dos agentes geradores, consumidores e comercializadores - é: (i) desenvolver e implementar modelos de otimização em programação linear estocástica com métrica CVaR associada, customizados para cada um desses agentes; e (ii) aplicá-los na análise estratégica de operações como forma de apresentar alternativas factíveis à gestão das atividades desses agentes e contribuir com a proposição de um instrumento conceitualmente robusto e amigável ao usuário, para utilização por parte das empresas. Nesse contexto, como antes frisado, dá-se ênfase na análise do risco financeiro dessas operações por meio da aplicação do CVaR e com base na aversão ao risco do agente. Considera-se as fontes renováveis hídrica e eólica como opções de ativos de geração, de forma a estudar o efeito de complementaridade entre fontes distintas e entre sites distintos da mesma fonte, avaliando-se os rebatimentos nas operações.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We model social choices as acts mapping states of the world to (social) outcomes. A (social choice) rule assigns an act to every profile of subjective expected utility preferences over acts. A rule is strategy-proof if no agent ever has an incentive to misrepresent her beliefs about the world or her valuation of the outcomes; it is ex-post efficient if the act selected at any given preference profile picks a Pareto-efficient outcome in every state of the world. We show that every two-agent ex-post efficient and strategy-proof rule is a top selection: the chosen act picks the most preferred outcome of some (possibly different) agent in every state of the world. The states in which an agent’s top outcome is selected cannot vary with the reported valuations of the outcomes but may change with the reported beliefs. We give a complete characterization of the ex-post efficient and strategy-proof rules in the two-agent, two-state case, and we identify a rich class of such rules in the two-agent case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We model social choices as acts mapping states of the world to (social) outcomes. A (social choice) rule assigns an act to every profile of subjective expected utility preferences over acts. A rule is strategy-proof if no agent ever has an incentive to misrepresent her beliefs about the world or her valuation of the outcomes; it is ex-post efficient if the act selected at any given preference profile picks a Pareto-efficient outcome in every state of the world. We show that every two-agent ex-post efficient and strategy-proof rule is a top selection: the chosen act picks the most preferred outcome of some (possibly different) agent in every state of the world. The states in which an agent’s top outcome is selected cannot vary with the reported valuations of the outcomes but may change with the reported beliefs. We give a complete characterization of the ex-post efficient and strategy-proof rules in the two-agent, two-state case, and we identify a rich class of such rules in the two-agent case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The standard approach to modelling production under uncertainty has relied on the concept of the stochastic production function. In the present paper, it is argued that a state-contingent production model is more flexible and realistic. The model is applied to the problem of drought policy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concepts of constant absolute risk aversion and constant relative risk aversion have proved useful in the analysis of choice under uncertainty, but are quite restrictive, particularly when they are imposed jointly. A generalization of constant risk aversion, referred to as invariant risk aversion is developed. Invariant risk aversion is closely related to the possibility of representing preferences over state-contingent income vectors in terms of two parameters, the mean and a linearly homogeneous, translation-invariant index of riskiness. The best-known index with such properties is the standard deviation. The properties of the capital asset pricing model, usually expressed in terms of the mean and standard deviation, may be extended to the case of general invariant preferences. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a state-contingent framework produces significantly different estimates of elasticities, firm technical efficiencies, and other quantities of economic interest.