984 resultados para Real-Time Monitoring, Reactive Processing, Fibre-Optic Spectroscopy, NIR Analysis, Chemorheology
Resumo:
A fibre optic technique for detecting trace amounts of nitrite compounds in water is described. The off-line fibre optic sensor outlined here is based on evanescent field absorption in a test solution formed by the reaction of nitrite compounds in water with suitable chemical reagents. A short unclad portion of a plastic clad silica fibre acts as the sensing region. The experimental results clearly establish the usefulness of the present technique for detecting very low concentrations of the order of 1 ppb (parts per billion) of nitrite compounds with a large dynamic range of 1–1000 ppb. Such a high sensitivity enables the present device to be used for measuring the nitrite content in drinking water.
Resumo:
The design and development of a fibre optic evanescent wave refractometer for the detection of trace amounts of paraffin oil and palm oil in coconut oil is presented. This sensor is based on a side-polished plastic optical fibre. At the sensing region, the cladding and a small portion of the core are removed and the fibre nicely polished. The sensing region is fabricated in such a manner that it sits perfectly within a bent mould. This bending of the sensing region enhances its sensitivity. The oil mixture of different mix ratios is introduced into the sensing region and we observed a sharp decrease in the output intensity. The observed variation in the intensity is found to be linear and the detection limit is 2% (by volume) paraffin oil/palm oil in coconut oil. The resolution of this refractometric sensor is of the order of 10−3. Since coconut oil is consumed in large volumes as edible oil in south India, this fibre optic sensor finds great relevance for the detection of adulterants such as paraffin oil or palm oil which are readily miscible in coconut oil. The advantage of this type of sensor is that it is inexpensive and easy to set up. Another attraction of the side-polished fibre is that only a very small amount of analyte is needed and its response time is only 7 s.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory
Resumo:
The automatic interpretation of conventional traffic signs is very complex and time consuming. The paper concerns an automatic warning system for driving assistance. It does not interpret the standard traffic signs on the roadside; the proposal is to incorporate into the existing signs another type of traffic sign whose information will be more easily interpreted by a processor. The type of information to be added is profuse and therefore the most important object is the robustness of the system. The basic proposal of this new philosophy is that the co-pilot system for automatic warning and driving assistance can interpret with greater ease the information contained in the new sign, whilst the human driver only has to interpret the "classic" sign. One of the codings that has been tested with good results and which seems to us easy to implement is that which has a rectangular shape and 4 vertical bars of different colours. The size of these signs is equivalent to the size of the conventional signs (approximately 0.4 m2). The colour information from the sign can be easily interpreted by the proposed processor and the interpretation is much easier and quicker than the information shown by the pictographs of the classic signs
Resumo:
Real-time geoparsing of social media streams (e.g. Twitter, YouTube, Instagram, Flickr, FourSquare) is providing a new 'virtual sensor' capability to end users such as emergency response agencies (e.g. Tsunami early warning centres, Civil protection authorities) and news agencies (e.g. Deutsche Welle, BBC News). Challenges in this area include scaling up natural language processing (NLP) and information retrieval (IR) approaches to handle real-time traffic volumes, reducing false positives, creating real-time infographic displays useful for effective decision support and providing support for trust and credibility analysis using geosemantics. I will present in this seminar on-going work by the IT Innovation Centre over the last 4 years (TRIDEC and REVEAL FP7 projects) in building such systems, and highlights our research towards improving trustworthy and credible of crisis map displays and real-time analytics for trending topics and influential social networks during major news worthy events.
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·
Resumo:
A recent area for investigation into the development of adaptable robot control is the use of living neuronal networks to control a mobile robot. The so-called Animat paradigm comprises a neuronal network (the ‘brain’) connected to an external embodiment (in this case a mobile robot), facilitating potentially robust, adaptable robot control and increased understanding of neural processes. Sensory input from the robot is provided to the neuronal network via stimulation on a number of electrodes embedded in a specialist Petri dish (Multi Electrode Array (MEA)); accurate control of this stimulation is vital. We present software tools allowing precise, near real-time control of electrical stimulation on MEAs, with fast switching between electrodes and the application of custom stimulus waveforms. These Linux-based tools are compatible with the widely used MEABench data acquisition system. Benefits include rapid stimulus modulation in response to neuronal activity (closed loop) and batch processing of stimulation protocols.
Resumo:
Aims: All members of the ruminal Butyrivibrio group convert linoleic acid (cis-9,cis-12-18 : 2) via conjugated 18 : 2 metabolites (mainly cis-9,trans-11-18 : 2, conjugated linoleic acid) to vaccenic acid (trans-11-18 : 1), but only members of a small branch, which includes Clostridium proteoclasticum, of this heterogeneous group further reduce vaccenic acid to stearic acid (18 : 0, SA). The aims of this study were to develop a real-time polymerase chain reaction (PCR) assay that would detect and quantify these key SA producers and to use this method to detect diet-associated changes in their populations in ruminal digesta of lactating cows. Materials and Results: The use of primers targeting the 16S rRNA gene of Cl. proteoclasticum was not sufficiently specific when only binding dyes were used for detection in real-time PCR. Their sequences were too similar to some nonproducing strains. A molecular beacon probe was designed specifically to detect and quantify the 16S rRNA genes of the Cl. proteoclasticum subgroup. The probe was characterized by its melting curve and validated using five SA-producing and ten nonproducing Butyrivibrio-like strains and 13 other common ruminal bacteria. Analysis of ruminal digesta collected from dairy cows fed different proportions of starch and fibre indicated a Cl. proteoclasticum population of 2-9% of the eubacterial community. The influence of diet on numbers of these bacteria was less than variations between individual cows. Conclusion: A molecular beacon approach in qPCR enables the detection of Cl. proteoclasticum in ruminal digesta. Their numbers are highly variable between individual animals. Signifance and Impact of the Study: SA producers are fundamental to the flow of polyunsaturated fatty acid and vaccenic acid from the rumen. The method described here enabled preliminary information to be obtained about the size of this population. Further application of the method to digesta samples from cows fed diets of more variable composition should enable us to understand how to control these bacteria in order to enhance the nutritional characteristics of ruminant-derived foods, including milk and beef.
Resumo:
Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).
Resumo:
The major technical objectives of the RC-NSPES are to provide a framework for the concurrent operation of reactive and pro-active security functions to deliver efficient and optimised intrusion detection schemes as well as enhanced and highly correlated rule sets for more effective alerts management and root-cause analysis. The design and implementation of the RC-NSPES solution includes a number of innovative features in terms of real-time programmable embedded hardware (FPGA) deployment as well as in the integrated management station. These have been devised so as to deliver enhanced detection of attacks and contextualised alerts against threats that can arise from both the network layer and the application layer protocols. The resulting architecture represents an efficient and effective framework for the future deployment of network security systems.
Resumo:
This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i) motion detection using a layered background model, (ii) object tracking based on local appearance, (iii) hierarchical object recognition, and (iv) fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed. Copyright (C) 2007 Hindawi Publishing Corporation. All rights reserved.
Resumo:
Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.
Resumo:
The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.
Resumo:
The real time hardware architecture of a deterministic video echo canceller (deghoster) system is presented. The deghoster is capable of calculating all the multipath channel distortion characteristics from terrestrial and cable television in one single pass while performing real time video in-line ghost cancellation. The results from the actual system are also presented in this paper.