979 resultados para Read Only Memory
Resumo:
Objective: There is convincing evidence that phonological, orthographic and semantic processes influence children’s ability to learn to read and spell words. So far only a few studies investigated the influence of implicit learning in literacy skills. Children are sensitive to the statistics of their learning environment. By frequent reading they acquire implicit knowledge about the frequency of letter patterns in written words, and they use this knowledge during reading and spelling. Additionally, semantic connections facilitate to storing of words in memory. Thus, the aim of the intervention study was to implement a word-picture training which is based on statistical and semantic learning. Furthermore, we aimed at examining the training effects in reading and spelling in comparison to an auditory-visual matching training and a working memory training program. Participants and Methods: One hundred and thirty-two children aged between 8 and 11 years participated in training in three weekly session of 12 minutes over 8 weeks, and completed other assessments of reading, spelling, working memory and intelligence before and after training. Results: Results revealed in general that the word-picture training and the auditory-visual matching training led to substantial gains in reading and spelling performance in comparison to the working-memory training. Although both children with and without learning difficulties profited in their reading and spelling after the word-picture training, the training program led to differential effects for the two groups. After the word-picture training on the one hand, children with learning difficulties profited more in spelling as children without learning difficulties, on the other hand, children without learning difficulties benefit more in word comprehension. Conclusions: These findings highlight the need for frequent reading trainings with semantic connections in order to support the acquisition of literacy skills.
Resumo:
This study investigated the roles of the right and left dorsolateral prefrontal (rDLPFC, lDLPFC) and the medial frontal cortex (MFC) in executive functioning using a theta burst transcranial magnetic stimulation (TMS) approach. Healthy subjects solved two visual search tasks: a number search task with low cognitive demands, and a number and letter search task with high cognitive demands. To observe how subjects solved the tasks, we assessed their behavior with and without TMS using eye movements when subjects were confronted with specific executive demands. To observe executive functions, we were particularly interested in TMS-induced changes in visual exploration strategies found to be associated with good or bad performance in a control condition without TMS stimulation. TMS left processing time unchanged in both tasks. Inhibition of the rDLPFC resulted in a decrease in anticipatory fixations in the number search task, i.e., a decrease in a good strategy in this low demand task. This was paired with a decrease in stimulus fixations. Together, these results point to a role of the rDLPFC in planning and response selection. Inhibition of the lDLPFC and the MFC resulted in an increase in anticipatory fixations in the number and letter search task, i.e., an increase in the application of a good strategy in this task. We interpret these results as a compensatory strategy to account for TMS-induced deficits in attentional switching when faced with high switching demands. After inhibition of the lDLPFC, an increase in regressive fixations was found in the number and letter search task. In the context of high working memory demands, this strategy appears to support TMS-induced working memory deficits. Combining an experimental TMS approach with the recording of eye movements proved sensitive to discrete decrements of executive functions and allows pinpointing the functional organization of the frontal lobes.
Resumo:
Background: Semantic memory processes have been well described in literature. However, the available findings are mostly based on relatively young subjects and concrete word material (e.g. tree). Comparatively little information exists about semantic memory for abstract words (e.g. mind) and possible age related changes in semantic retrieval. In this respect, we developed a paradigm that is useful to investigate the implicit (i.e. attentionindependent) access to concrete and abstract semantic memory. These processes were then compared between young and elderly healthy subjects. Methods: A well established tool for investigating semantic memory processes is the semantic priming paradigm, which consists both of semantically unrelated and related word pairs. In our behavioral task these noun-noun word pairs were further divided into concrete, abstract and matched pronounceable non-word conditions. With this premise, the young and elderly participants performed a lexical decision task: they were asked to press a choice of two buttons as an indication for whether the word pair contained a non-word or not. In order to minimize controlled (i.e. attention-dependent) retrieval strategies, a short stimulus onset asynchrony (SOA) of 150ms was set. Reaction time (RT) changes and accuracy to related and unrelated words (priming effect) in the abstract vs. concrete condition (concreteness effect) were the dependent variables of interest. Results and Discussion: Statistical analysis confirmed both a significant priming effect (i.e. shorter RTs in semantically related compared to unrelated words) and a concreteness effect (i.e. RT decrease for concrete compared to abstract words) in the young and elderly subjects. There was no age difference in accuracy. The only age effect was a commonly known general slowing in RT over all conditions. In conclusion, age is not a critical factor in the implicit access to abstract and concrete semantic memory.
Resumo:
A large body of research suggests that when we retrieve visual information from memory, we look back to the location where we encoded these objects. It has been proposed that the oculomotor trace we act out during encoding is stored in long-term memory, along other contents of the episodic representation. If memory recall triggers the eyes to revisit the location where the stimulus was encoded, is there also an effect in the reverse direction? Can eye movements trigger memory recall? In Experiment 1 participants encoded two faces at two different locations on the computer screen. Then, the average face (morph) of these two faces appeared in either of the two encoding locations and participants had to indicate whether it resembles more the first or second face. In Experiment 2 the morph appeared in a new location, but participants had to repeat one of the oculomotor traces that was used during encoding. Participants’ morph perception was influenced both by the location and the eye-movement it was presented with. Our results suggest that eye-movements can bias memory recall, but only in a short-lasting and rather fragile way.
Resumo:
Individuals with intellectual disabilities (ID) often struggle with learning how to read. Reading difficulties seem to be the most common secondary condition of ID. Only one in five children with mild or moderate ID achieves even minimal literacy skills. However, literacy education for children and adolescents with ID has been largely overlooked by researchers and educators. While there is little research on reading of children with ID, many training studies have been conducted with other populations with reading difficulties. The most common approach of acquiring literacy skills consists of sophisticated programs that train phonological skills and auditory perception. Only few studies investigated the influence of implicit learning on literacy skills. Implicit learning processes seem to be largely independent of age and IQ. Children are sensitive to the statistics of their learning environment. By frequent word reading they acquire implicit knowledge about the frequency of single letters and letter patterns in written words. Additionally, semantic connections not only improve the word understanding, but also facilitate storage of words in memory. Advances in communication technology have introduced new possibilities for remediating literacy skills. Computers can provide training material in attractive ways, for example through animations and immediate feedback .These opportunities can scaffold and support attention processes central to learning. Thus, the aim of this intervention study was to develop and implement a computer based word-picture training, which is based on statistical and semantic learning, and to examine the training effects on reading, spelling and attention in children and adolescents (9-16 years) diagnosed with mental retardation (general IQ 74). Fifty children participated in four to five weekly training sessions of 15-20 minutes over 4 weeks, and completed assessments of attention, reading, spelling, short-term memory and fluid intelligence before and after training. After a first assessment (T1), the entire sample was divided in a training group (group A) and a waiting control group (group B). After 4 weeks of training with group A, a second assessment (T2) was administered with both training groups. Afterwards, group B was trained for 4 weeks, before a last assessment (T3) was carried out in both groups. Overall, the results showed that the word-picture training led to substantial gains on word decoding and attention for both training groups. These effects were preserved six weeks later (group A). There was also a clear tendency of improvement in spelling after training for both groups, although the effect did not reach significance. These findings highlight the fact that an implicit statistical learning training in a playful way by motivating computer programs can not only promote reading development, but also attention in children with intellectual disabilities.
Resumo:
Prospective memory (ProM) is the ability to remember and perform an intention in the future. If a prospective memory task is to be performed only once, it is episodic. If it is repeated, then it becomes habitual. Thus, with repetition, a task changes from episodic to habitual. The goal of this study was to investigate the transition from episodic to habitual prospective memory with event-related potentials (ERP). The ProM task was to respond to a target word which was embedded in an ongoing lexical decision task. 40 ProM trials were administered in each of two sessions that were separated by a week. The results revealed a behavioural consolidation effect with increased ProM performance after one week. The ERP-analyses showed that when the task became more habitual a difference occurred in a time-window between 450-650 ms post-stimulus in an ERP-component. In addition, a covariance analysis revealed that this transition is continued in the second session. These results demonstrate that the transition from episodic to habitual prospective memory is long-lasting and continuous.
Resumo:
Succeeding in everyday activities often requires executive functioning (EF), metacognitive abilities (MC) and memory skills such as prospective memory (PM) and retrospective memory (RM). These cognitive abilities seem to gradually develop in childhood, possibly influencing each other during development. From a theoretical point of view, it is likely that they are closely interrelated, especially in children. Their empirical relation, however, is less clear. A model that links these cognitive abilities can help to better understand the relation between PM and RM and other cognitive processes. In this project we studied the longitudinal development of PM, RM, EF, and MC in 7-8 year old elementary school children across half a year. 119 second graders (MT1 = 95 months, SDT1, = 4.8 months) completed the same PM, RM, EF and MC tasks twice with a time-lag of 7 months. The developmental progression was analysed using paired t-tests, the longitudinal relationships were analysed using confirmatory factor analysis and all fit indices are in accordance with Hu and Bentler (1998). In general, performance improved significantly (ps < .001) and effect sizes ranged from .45 to .62 (Cohen’s d). CFA revealed a good model fit, c2(227, 119) = 242.56, p = .23, TLI = .973, CFI = .979, RMSEA = .024. At T1, significant cross-sectional links were found between PM T1 and RM T1, between PM T1 and EF T1, and between EF T1 and MC T1. Moreover, significant longitudinal links were found between EFT1 and PMT2 and between EFT1 and MCT2; EF T1 and RM T2 were marginally linked. Results underline previous findings showing that PM, RM, EF, and MC develop significantly during childhood, even within this short time period. Results also indicate that these cognitive abilities are linked not only cross-sectionally, but longitudinally. Most relevant, however, is the predictive role of EF for both metacognition and memory.
Resumo:
Prospective Memory (PM), executive functions (EF) and metacognition (MC) are relevant cognitive abilities for everyday functioning. They all seem to develop gradually in childhood and appear to be theoretically closely related; however, their empirical links remain unclear, especially in children. As a recent study revealed significant cross-sectional links between PM and EF, and a weaker but close link between PM and MC in 2nd graders (Spiess, Meier, & Roebers, submitted), this study focused on their short-term relationships and on their development. 119 children (MT1 =95 months, SDT1, = 4.8 months) completed the same tasks (one PM, three EF, one MC task) twice with a time-lag of 7 months. T-tests showed significant improvements in all tasks, except in the updating task. Different structural equation models were contrasted (AMOS); the best fitting model revealed that PMT2 was similarly predicted by PMT1 (r = .33) and EFT1 (r = .34). Additionally, EFT1 predicted MCT2 (r = .44), chi2(118, 119) = 128.91, p = .23, TLI = .968, CFI = .978, RMSEA = .028. Results show that PM, EF, and MC develop during childhood and also demonstrate that they are linked not only cross-sectionally, but longitudinally. Findings are discussed in a broader developmental framework.
Resumo:
In a prospective memory task responding to a prospective memory target involves switching between ongoing and prospective memory task which can result in a slowing of subsequent ongoing task performance (i.e., an after-effect). Moreover, a slowing can also occur when prospective memory targets occur after the prospective memory task is deactivated (i.e., another after-effect). In this study, we investigated both after-effects within the same study. Moreover, we also tested whether the latter after-effects even occur on subsequent ongoing task trials. The results show, in fact, after-effects of all kinds. Thus, (1) correctly responding to prospective memory targets results in after-effects, a so far neglected cost on ongoing task performance, (2) responding to deactivated prospective memory targets also slows down performance, probably due to the involuntary retrieval of the intention, and (3) this slowing is present even on subsequent ongoing task trials, suggesting that even deactivated intentions are sufficient to induce a conflict that requires subsequent adaptation. Overall, these results indicate that performance slowing in a prospective memory experiment includes various kinds of sources, not only monitoring cost, and these sources may be understood best in terms of conflict adaptation.
Resumo:
Studies revealing transfer effects of working memory (WM) training on non-trained cognitive performance of children hold promising implications for scholastic learning. However, the results of existing training studies are not consistent and provoke debates about the potential and limitations of cognitive enhancement. To examine the influence of individual differences on training outcomes is a promising approach for finding causes for such inconsistencies. In this study, we implemented WM training in an elementary school setting. The aim was to investigate near and far transfer effects on cognitive abilities and academic achievement and to examine the moderating effects of a dispositional and a regulative temperament factor, neuroticism and effortful control. Ninetynine second-graders were randomly assigned to 20 sessions of computer-based adaptiveWMtraining, computer-based reading training, or a no-contact control group. For the WM training group, our analyses reveal near transfer on a visual WM task, far transfer on a vocabulary task as a proxy for crystallized intelligence, and increased academic achievement in reading and math by trend. Considering individual differences in temperament, we found that effortful control predicts larger training mean and gain scores and that there is a moderation effect of both temperament factors on post-training improvement: WM training condition predicted higher post-training gains compared to both control conditions only in children with high effortful control or low neuroticism. Our results suggest that a short but intensive WM training program can enhance cognitive abilities in children, but that sufficient selfregulative abilities and emotional stability are necessary for WM training to be effective.
Resumo:
People with grapheme-colour synaesthesia have been shown to have enhanced memory on a range of tasks using both stimuli that induce synaesthesia (e.g. words) and, more surprisingly, stimuli that do not (e.g. certain abstract visual stimuli). This study examines the latter by using multi-featured stimuli consisting of shape, colour and location conjunctions (e.g. shape A + colour A + location A; shape B + colour B + location B) presented in a recognition memory paradigm. This enables distractor items to be created in which one of these features is ‘unbound’ with respect to the others (e.g. shape A + colour B + location A; shape A + colour A + location C). Synaesthetes had higher recognition rates suggesting an enhanced ability to bind certain visual features together into memory. Importantly, synaesthetes’ false alarm rates were lower only when colour was the unbound feature, not shape or location. We suggest that synaesthetes are “colour experts” and that enhanced perception can lead to enhanced memory in very specific ways; but, not for instance, an enhanced ability to form associations per se. The results support contemporary models that propose a continuum between perception and memory.
Resumo:
We presented 28 sentences uttered by 28 unfamiliar speakers to sleeping participants to investigate whether humans can encode new verbal messages, learn voices of unfamiliar speakers, and form associations between speakers and messages during EEG-defined deep sleep. After waking, participants performed three tests which assessed the unconscious recognition of sleep-played speakers, messages, and speaker-message associations. Recognition performance in all tests was at chance level. However, response latencies revealed implicit memory for sleep-played messages but neither for speakers nor for speaker-message combinations. Only participants with excellent implicit memory for sleep-played messages also displayed implicit memory for speakers but not speaker-message associations. Hence, deep sleep allows for the semantic encoding of novel verbal messages.
Resumo:
Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex.
Resumo:
Three rhesus monkeys (Macaca mulatta) and four pigeons (Columba livia) were trained in a visual serial probe recognition (SPR) task. A list of visual stimuli (slides) was presented sequentially to the subjects. Following the list and after a delay interval, a probe stimulus was presented that could be either from the list (Same) or not from the list (Different). The monkeys readily acquired a variable list length SPR task, while pigeons showed acquisition only under constant list length condition. However, monkeys memorized the responses to the probes (absolute strategy) when overtrained with the same lists and probes, while pigeons compared the probe to the list in memory (relational strategy). Performance of the pigeon on 4-items constant list length was disrupted when blocks of trials of different list lengths were imbedded between the 4-items blocks. Serial position curves for recognition at variable probe delays showed better relative performance on the last items of the list at short delays (0-0.5 seconds) and better relative performance on the initial items of the list at long delays (6-10 seconds for the pigeons and 20-30 seconds for the monkeys and a human adolescent). The serial position curves also showed reliable primacy and recency effects at intermediate probe delays. The monkeys showed evidence of using a relational strategy in the variable probe delay task. The results are the first demonstration of relational serial probe recognition performance in an avian and suggest similar underlying dynamic recognition memory mechanisms in primates and avians. ^
Resumo:
Adult monkeys (Macaca mulatta) with lesions of the hippocampal formation, perirhinal cortex, areas TH/TF, as well as controls were tested on tasks of object, spatial and contextual recognition memory. ^ Using a visual paired-comparison (VPC) task, all experimental groups showed a lack of object recognition relative to controls, although this impairment emerged at 10 sec with perirhinal lesions, 30 sec with areas TH/TF lesions and 60 sec with hippocampal lesions. In contrast, only perirhinal lesions impaired performance on delayed nonmatching-to-sample (DNMS), another task of object recognition memory. All groups were tested on DNMS with distraction (dDNMS) to examine whether the use of active cognitive strategies during the delay period could enable good performance on DNMS in spite of impaired recognition memory (revealed by the VPC task). Distractors affected performance of animals with perirhinal lesions at the 10-sec delay (the only delay in which their DNMS performance was above chance). They did not affect performance of animals with areas TH/TF lesions. Hippocampectomized animals were impaired at the 600-sec delay (the only delay at which prevention of active strategies would likely affect their behavior). ^ While lesions of areas TH/TF impaired spatial location memory and object-in-place memory, hippocampal lesions impaired only object-in-place memory. The pattern of results for perirhinal cortex lesions on the different task conditions indicated that this cortical area is not critical for spatial memory. ^ Finally, all three lesions impaired contextual recognition memory processes. The pattern of impairment appeared to result from the formation of only a global representation of the object and background, and suggests that all three areas are recruited for associating information across sources. ^ These results support the view that (1) the perirhinal cortex maintains storage of information about object and the context in which it is learned for a brief period of time, (2) areas TH/TF maintain information about spatial location and form associations between objects and their spatial relationship (a process that likely requires additional time) and (3) the hippocampal formation mediates associations between objects, their spatial relationship and the general context in which these associations are formed (an integrative function that requires additional time). ^