999 resultados para Railroad locomotives--Michigan
Resumo:
This work is conducted to study the geological and petrophysical features of the Trenton- Black River limestone formation. Log curves, crossplots and mineral identification methods using well-log data are used to determine the components and analyze changes in lithology. Thirty-five wells from the Michigan Basin are used to define the mineralogy of Trenton-Black River limestone. Using the different responses of a few log curves, especially gamma-ray, resistivity and neutron porosity, the formation tops for the Utica shale, the Trenton limestone, the Black River limestone and the Prairie du Chien sandstone are identified to confirm earlier authors’ work and provide a basis for my further work. From these, an isopach map showing the thickness of Trenton-Black River formation is created, indicating that its maximum thickness lies in the eastern basin and decreases gradually to the west. In order to obtain more detailed lithological information about the limestone formations at the thirty-five wells, (a) neutron-density and neutron-sonic crossplots, (b) mineral identification methods, including the M-N plot, MID plot, ϱmaa vs. Umaa MID plot, and the PEF plot, and (c) a modified mineral identification technique are applied to these wells. From this, compositions of the Trenton-Black River formation can be divided into three different rock types: pure limestone, partially dolomitized limestone, and shaly limestone. Maps showing the fraction of dolomite and shale indicate their geographic distribution, with dolomite present more in the western and southwestern basin, and shale more common in the north-central basin. Mineral identification is an independent check on the distribution found from other authors, who found similar distributions based on core descriptions. The Thomas Stieber method of analysis is best suited to sand-shale sequences, interpreting hree different distributions of shale within sand, including dispersed, laminated and structural. Since this method is commonly applied in clastic rocks, my work using the Thomas Stieber method is new, as an attempt to apply this technique, developed for clastics, to carbonate rocks. Based on the original assumption and equations with a corresponding change to the Trenton-Black River formation, feasibility of using the Thomas Stieber method in carbonates is tested. A graphical display of gamma-ray versus density porosity, using the properties of clean carbonate and pure shale, suggests the presence of laminated shale in fourteen wells in this study. Combined with Wilson’s study (2001), it is safe to conclude that when shale occurs in the Trenton-Black River formation, it tends to be laminated shale.
Resumo:
The purpose of this research is to assess public values and perceptions concerning industrial heritage in the Keweenaw by studying visitors at an endangered mining site tour. This research presents and analyzes feedback collected directly from participants in the Cliff Mine (Michigan) archaeological field school public tour surveys in June 2011, gathers semi-structured interview data from survey participants and local experts, and synthesizes and collates both survey and interview data. As those who study heritage site visitors have found, in all outreach there is a necessity for deeper understanding of visitors for the outreach to be effective. An appropriate metric for collecting public values and opinions was created and used at the Cliff Mine archaeological field school public tours. To accomplish research goals, an opinion survey was created to collect demographic information and qualitative feedback from visitors at the Cliff Mine field school. The survey, a pre-tour and post-tour question list, found that all visitors who filled out a survey supported preservation and most were adults over 46 years of age. Most visitors were white-collar professionals, identified as local residents, and found out about the tour through the newspaper. Interview questions were constructed to supplement and expand on the visitor survey results. In addition, local experts involved in Keweenaw heritage were interviewed. All interviewees supported heritage preservation but often had conflicting views when activities such as mineral collecting were factored into the preservation question. By analyzing responses to the survey and interviews, improvements to outreach efforts at the Cliff Mine are recommended. Future research should further explore perceptions of social class and identity, and should seek out stakeholders not contacted through this research, in order to improve outreach and include all community groups.
Resumo:
In Fall 1992, our first physics course offered online homework. Over two decades later, we have seven physics courses online, spanning the whole range of introductory course offerings, with a total of over 1600 students in 2014. We found that several of the the purely online courses had better learning success than traditional lecture courses, as measured by exam scores. Particularly successful were online materials with embedded assessment. This result can be interpreted in different ways, but may serve as an indicator that during in-class lectures, we are oftentimes not taking advantage of the fact that we have the students on-site.
Resumo:
Lake-effect snow is an important constraint on ecological and socio-economic systems near the North American Great Lakes. Little is known about the Holocene history of lake-effect snowbelts, and it is difficult to decipher how lake-effect snowfall abundance affected ecosystem development. We conducted oxygen-isotope analysis of calcite in lake-sediment cores from northern Lower Michigan to infer Holocene climatic variation and assess snowbelt development. The two lakes experience the same synoptic-scale climatic systems, but only one of them (Huffman Lake) receives a significant amount of lake-effect snow. A 177-cm difference in annual snowfall causes groundwater inflow at Huffman Lake to be 18O-depleted by 2.3‰ relative to O'Brien Lake. To assess when the lake-effect snowbelt became established, we compared calcite-δ18O profiles of the last 11,500 years from these two sites. The chronologies are based on accelerator-mass-spectrometry 14C ages of 11 and 17 terrestrial-plant samples from Huffman and O'Brien lakes, respectively. The values of δ18O are low at both sites from 11,500 to 9500 cal yr BP when the Laurentide Ice Sheet (LIS) exerted a dominant control over the regional climate and provided periodic pulses of meltwater to the Great Lakes basin. Carbonate δ18O increases by 2.6‰ at O'Brien Lake and by 1.4‰ at Huffman Lake between 9500 and 7000 cal yr BP, suggesting a regional decline in the proportion of runoff derived from winter precipitation. The Great Lakes snowbelt probably developed between 9500 and 5500 cal yr BP as inferred from the progressive 18O-depletion at Huffman Lake relative to O'Brien Lake, with the largest increase of lake-effect snow around 7000 cal yr BP. Lake-effect snow became possible at this time because of increasing contact between the Great Lakes and frigid arctic air. These changes resulted from enhanced westerly flow over the Great Lakes as the LIS collapsed, and from rapidly rising Great Lakes levels during the Nipissing Transgression. The δ18O difference between Huffman and O'Brien lakes declines after 5500 cal yr BP, probably because of a northward shift of the polar vortex that brought increasing winter precipitation to the entire region. However, δ18O remains depleted at Huffman Lake relative to O'Brien Lake because of the continued production of lake-effect snow.
Resumo:
Continental evaporation is a significant and dynamic flux within the atmospheric water budget, but few methods provide robust observational constraints on the large-scale hydroclimatological and hydroecological impacts of this ‘recycled-water' flux. We demonstrate a geospatial analysis that provides such information, using stable isotope data to map the distribution of recycled water in shallow aquifers downwind from Lake Michigan. The δ2H and δ18O values of groundwater in the study region decrease from south to north, as expected based on meridional gradients in climate and precipitation isotope ratios. In contrast, deuterium excess (d = δ2H − 8 × δ18O) values exhibit a significant zonal gradient and finer-scale spatially patterned variation. Local d maxima occur in the northwest and southwest corners of the Lower Peninsula of Michigan, where ‘lake-effect' precipitation events are abundant. We apply a published model that describes the effect of recycling from lakes on atmospheric vapor d values to estimate that up to 32% of recharge into individual aquifers may be derived from recycled Lake Michigan water. Applying the model to geostatistical surfaces representing mean d values, we estimate that between 10% and 18% of the vapor evaporated from Lake Michigan is re-precipitated within downwind areas of the Lake Michigan drainage basin. Our approach provides previously unavailable observational constraints on regional land-atmosphere water fluxes in the Great Lakes Basin and elucidates patterns in recycled-water fluxes that may influence the biogeography of the region. As new instruments and networks facilitate enhanced spatial monitoring of environmental water isotopes, similar analyses can be widely applied to calibrate and validate water cycle models and improve projections of regional hydroecological change involving the coupled lake-atmosphere-land system. Read More: http://www.esajournals.org/doi/abs/10.1890/ES12-00062.1
Resumo:
Time-space relations of extension and volcanism place critical constraints on models of Basin and Range extensional processes. This paper addresses such relations in a 130-km-wide transect in the eastern Great Basin, bounded on the east by the Ely Springs Range and on the west by the Grant and Quinn Canyon ranges. Stratigraphic and structural data, combined with 40Ar/39Ar isotopic ages of volcanic rocks, document a protracted but distinctly episodic extensional history. Field relations indicate four periods of faulting. Only one of these periods was synchronous with nearby volcanic activity, which implies that volcanism and faulting need not be associated closely in space and time. Based on published dates and the analyses reported here, the periods of extension were (1) prevolcanic (pre-32 Ma), (2) early synvolcanic (30 to 27 Ma), (3) immediately postvolcanic (about 16 to 14 Ma), and (4) Pliocene to Quaternary. The break between the second and third periods is distinct. The minimum gap between the first two periods is 2 Ma, but the separation may be much larger. Temporal separation of the last two periods is only suggested by the stratigraphic record and cannot be rigorously demonstrated with present data. The three younger periods of faulting apparently occurred across the entire transect. The oldest period is recognized only at the eastern end of the transect, but appears to correlate about 150 km northward along strike with extension in the Northern Snake Range-Kern Mountains area. Therefore the oldest period also is regional in extent, but affected a different area than that affected by younger periods. This relation suggests that distinct extensional structures and master detachment faults were active at different times. The correlation of deformation periods of a few million years duration across the Railroad Valley-Pioche transect suggests that the scale of active extensional domains in the Great Basin may be greater than 100 km across strike.
Resumo:
Manganese nodules containing up to 22 percent manganese oxide were found in Green Bay and the western and northern parts of Lake Michigan. The chemical composition of these nodules resembles that of shallow-water lacustrine and marine nodules. The manganese content of interstitial water is in some places enriched as much as 4000 times over that of lake water.
Resumo:
The differential solubility of ferromanganese oxides can lead to stratigraphic separation of iron and manganese. Results of chemical analysis of a sequence of ferromanganese nodules overlying iron-rich crusts in northern Green Bay show that selec¬tive ion transport is important in concentrating manganese and associated trace elements near the oxygenated water-sediment interface. Manganese carbonate, which cements ferromanganese nodules, occurs in dark-gray silty sands that are located adjacent to the organic-rich muds of southern Green Bay. These muds contain an average of approximately 3.5 ppm (6x10-5M) interstitial Mn with 2.8 meq/l carbonate alkalinity. Thermodynamic calculation shows that interstitial water approaches equilibrium with MnCO3 in the upper 10 cm of sediment. This carbonate has a composition (Mn73Ca22Fe5)CO3 and has been identified as rhodochrosite.
Resumo:
Diseño conceptual de puentes de alta velocidad ferroviarios. Railroad bridges, in general, and those for high speed railways, in particular, demand very special conditions. The traffic loads are much higher than for road bridges. Loads due to braking and acceleration determine, due to their magnitude, the structural layout. Because of the speed of the vehicles there are specific dynamic effects which need to be considered. In order to ensure passenger comfort, compatible with speeds of up to 350 km/h, it is necessary to meet very demanding conditions with respect to stiffness, displacements and dynamic behavior. In this paper these conditions are briefly described and different typological possibilities to satisfy them are presented as well as the main construction methods applicable to this kind of bridges.