939 resultados para Radiation Therapy
Resumo:
Purpose: The effectiveness of synchronous carboplatin, etoposide, and radiation therapy was prospectively assessed in a group of patients with high-risk Merkel cell carcinoma (MCC) of the skin. Patients and Methods: Patients were eligible if they had disease localized to the primary site and nodes, and were required to have at least one of the following high risk features: recurrence after initial therapy, involved nodes, primary tumor size greater than 1 cm, gross residual disease after surgery, or occult primary with nodes. Radiation was delivered to the primary site and nodes to a dose of 50 Gy in 25 fractions over 5 weeks and synchronous carboplatin (area under the curve, 4.5) and intravenous etoposide 80 mg/m(2) days 1 to 3 was given in weeks 1, 4, 7, and 10. The median age of the group was 67 (range, 43-86) years, and there were 39 males and 14 females. Involved nodes (stage II) were present in 33 cases (62%). The sites involved were head and neck (22 patients), occult primary (13 patients), upper limb (eight patients), lower limb (eight patients), and trunk (two patients). Results: Fifty-three patients were entered between 1996 and 2001. The median potential follow-up was 48 months. There were no treatment related deaths. The 3-year overall survival, locoregional control, and distant control were 76%, 75%, and 76%, respectively. Tumor site and the presence of nodes were factors that were predictive for local control and survival. Multivariate analysis indicated that the major factor influencing survival was the presence of nodes; however, this was not a significant factor in locoregional control. Conclusion: High levels of locoregional control and survival have been achieved with the addition of chemotherapy to radiation treatment for high-risk MCC of the skin. The role of chemoradiotherapy for high-risk MCC warrants further investigation. (C) 2003 by American Society of Clinical Oncology.
Resumo:
Background: Approximately 25 per cent of patients with oesophageal cancer who undergo neoadjuvant chemoradiotherapy have no evidence of tumour in the resected specimen (complete pathological response). Those who do not respond have a poor 5-year survival compared with complete responders, regardless of whether or not they undergo surgery. Selecting for surgery only those who have a response to neoadjuvant therapy has the potential to improve overall survival as well as to rationalize the management of non-responders. This study assessed the accuracy of oesophagogastroscopy in this setting. Methods: A prospective database of 804 patients undergoing oesophageal resection for carcinoma was reviewed. Endoscopic assessment of the response to neoadjuvant therapy in 100 consecutive patients was compared with the pathological assessment of response. The survival for each level of response was compared. Results: At endoscopy 30 patients were considered to have had a complete response. This was confirmed pathologically in 15 patients. Survival was improved in those with a pathologically confirmed complete response (3-year survival rate 62.4 (s.e. 12.9) per cent) compared with non-responders (16.3 (s.e. 6.6) per cent). Those with microscopic residual disease also had an improved 3-year survival rate (46.3 (s.e. 12.2) per cent); however, oesophagogastroscopy failed to identify this subset. Conclusion: Oesophagogastroscopy may be useful in the assessment of tumour response to neoadjuvant therapy. However, owing to its poor accuracy patients should not be excluded from further therapeutic intervention on the basis of this assessment alone.
Resumo:
PURPOSE: Radiation therapy is used to treat cancer using carefully designed plans that maximize the radiation dose delivered to the target and minimize damage to healthy tissue, with the dose administered over multiple occasions. Creating treatment plans is a laborious process and presents an obstacle to more frequent replanning, which remains an unsolved problem. However, in between new plans being created, the patient's anatomy can change due to multiple factors including reduction in tumor size and loss of weight, which results in poorer patient outcomes. Cloud computing is a newer technology that is slowly being used for medical applications with promising results. The objective of this work was to design and build a system that could analyze a database of previously created treatment plans, which are stored with their associated anatomical information in studies, to find the one with the most similar anatomy to a new patient. The analyses would be performed in parallel on the cloud to decrease the computation time of finding this plan. METHODS: The system used SlicerRT, a radiation therapy toolkit for the open-source platform 3D Slicer, for its tools to perform the similarity analysis algorithm. Amazon Web Services was used for the cloud instances on which the analyses were performed, as well as for storage of the radiation therapy studies and messaging between the instances and a master local computer. A module was built in SlicerRT to provide the user with an interface to direct the system on the cloud, as well as to perform other related tasks. RESULTS: The cloud-based system out-performed previous methods of conducting the similarity analyses in terms of time, as it analyzed 100 studies in approximately 13 minutes, and produced the same similarity values as those methods. It also scaled up to larger numbers of studies to analyze in the database with a small increase in computation time of just over 2 minutes. CONCLUSION: This system successfully analyzes a large database of radiation therapy studies and finds the one that is most similar to a new patient, which represents a potential step forward in achieving feasible adaptive radiation therapy replanning.
Resumo:
The past decade has seen a dramatic increase in interest in the use of gold nanoparticles (GNPs) as radiation sensitizers for radiation therapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs' efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiation sensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes, and preparations. As a result, mechanisms of uptake and radiation sensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiation sensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage.
Resumo:
Increases in pediatric thyroid cancer incidence could be partly due to previous clinical intervention. This retrospective cohort study used 1973-2012 data from the Surveillance Epidemiology and End Results program to assess the association between previous radiation therapy exposure in development of second primary thyroid cancer (SPTC) among 0-19-year-old children. Statistical analysis included the calculation of summary statistics and univariable and multivariable logistic regression analysis. Relative to no previous radiation therapy exposure, cases exposed to radiation had 2.46 times the odds of developing SPTC (95% CI: 1.39-4.34). After adjustment for sex and age at diagnosis, Hispanic children who received radiation therapy for a first primary malignancy had 3.51 times the odds of developing SPTC compared to Hispanic children who had not received radiation therapy, [AOR=3.51, 99% CI: 0.69-17.70, p=0.04]. These findings support the development of age-specific guidelines for the use of radiation based interventions among children with and without cancer.
Resumo:
OBJECTIVE: To evaluate the scored Patient-generated Subjective Global Assessment (PG-SGA) tool as an outcome measure in clinical nutrition practice and determine its association with quality of life (QoL). DESIGN: A prospective 4 week study assessing the nutritional status and QoL of ambulatory patients receiving radiation therapy to the head, neck, rectal or abdominal area. SETTING: Australian radiation oncology facilities. SUBJECTS: Sixty cancer patients aged 24-85 y. INTERVENTION: Scored PG-SGA questionnaire, subjective global assessment (SGA), QoL (EORTC QLQ-C30 version 3). RESULTS: According to SGA, 65.0% (39) of subjects were well-nourished, 28.3% (17) moderately or suspected of being malnourished and 6.7% (4) severely malnourished. PG-SGA score and global QoL were correlated (r=-0.66, P<0.001) at baseline. There was a decrease in nutritional status according to PG-SGA score (P<0.001) and SGA (P<0.001); and a decrease in global QoL (P<0.001) after 4 weeks of radiotherapy. There was a linear trend for change in PG-SGA score (P<0.001) and change in global QoL (P=0.003) between those patients who improved (5%) maintained (56.7%) or deteriorated (33.3%) in nutritional status according to SGA. There was a correlation between change in PG-SGA score and change in QoL after 4 weeks of radiotherapy (r=-0.55, P<0.001). Regression analysis determined that 26% of the variation of change in QoL was explained by change in PG-SGA (P=0.001). CONCLUSION: The scored PG-SGA is a nutrition assessment tool that identifies malnutrition in ambulatory oncology patients receiving radiotherapy and can be used to predict the magnitude of change in QoL.
Resumo:
The main aim of radiotherapy is to deliver a dose of radiation that is high enough to destroy the tumour cells while at the same time minimising the damage to normal healthy tissues. Clinically, this has been achieved by assigning a prescription dose to the tumour volume and a set of dose constraints on critical structures. Once an optimal treatment plan has been achieved the dosimetry is assessed using the physical parameters of dose and volume. There has been an interest in using radiobiological parameters to evaluate and predict the outcome of a treatment plan in terms of both a tumour control probability (TCP) and a normal tissue complication probability (NTCP). In this study, simple radiobiological models that are available in a commercial treatment planning system were used to compare three dimensional conformal radiotherapy treatments (3D-CRT) and intensity modulated radiotherapy (IMRT) treatments of the prostate. Initially both 3D-CRT and IMRT were planned for 2 Gy/fraction to a total dose of 60 Gy to the prostate. The sensitivity of the TCP and the NTCP to both conventional dose escalation and hypo-fractionation was investigated. The biological responses were calculated using the Källman S-model. The complication free tumour control probability (P+) is generated from the combined NTCP and TCP response values. It has been suggested that the alpha/beta ratio for prostate carcinoma cells may be lower than for most other tumour cell types. The effect of this on the modelled biological response for the different fractionation schedules was also investigated.
Resumo:
Background Diagnosis and treatment of cancer can contribute to psychological distress and anxiety amongst patients. Evidence indicates that information giving can be beneficial in reducing patient anxiety, so oncology specific information may have a major impact on this patient group. This study investigates the effects of an orientation program on levels of anxiety and self-efficacy amongst newly registered cancer patients who are about to undergo chemotherapy and/or radiation therapy in the cancer care centre of a large tertiary Australian hospital. Methods The concept of interventions for orienting new cancer patients needs revisiting due to the dynamic health care system. Historically, most orientation programs at this cancer centre were conducted by one nurse. A randomised controlled trial has been designed to test the effectiveness of an orientation program with bundled interventions; a face-to-face program which includes introduction to the hospital facilities, introduction to the multi-disciplinary team and an overview of treatment side effects and self care strategies. The aim is to orientate patients to the cancer centre and to meet the health care team. We hypothesize that patients who receive this orientation will experience lower levels of anxiety and distress, and a higher level of self-efficacy. Discussion An orientation program is a common health care service provided by cancer care centres for new cancer patients. Such programs aim to give information to patients at the beginning of their encounter at a cancer care centre. It is clear in the literature that interventions that aim to improve self-efficacy in patients may demonstrate potential improvement in health outcomes. Yet, evidence on the effects of orientation programs for cancer patients on self-efficacy remains scarce, particularly with respect to the use of multidisciplinary team members. This paper presents the design of a randomised controlled trial that will evaluate the effects and feasibility of a multidisciplinary orientation program for new cancer patients.
Resumo:
Being physically active during and following treatment for breast cancer has been associated with a range of benefits including improved fitness and function, body composition and immune function and reductions in stress, depression and anxiety, as well as the number and severity of treatment-related side-effects such as nausea, fatigue and pain, all of which contribute to improvements in quality of life. There is also emerging evidence linking active lifestyles with improved survival. Therefore, there is little doubt that participating in regular exercise following breast cancer is ‘good’. Unfortunately, research investigating the role of exercise for women considered at high-risk of lymphoedema or who have developed lymphedema following breast cancer is lacking. For fear of initiating or exacerbating lymphoedema, these women have traditionally been cautioned rather than encouraged to be regularly active. However, recent preliminary findings suggest that being inactive may increase risk of developing lymphedema, and that for those with lymphoedema, participation in an exercise program does not exacerbate the condition. This presentation will address what we know about the role of exercise following a breast cancer diagnosis and will provide some practical recommendations about becoming and staying regularly active following breast cancer, for those with and without lymphoedema.
Resumo:
The effects of radiation backscattered from the secondary collimators into the monitor chamber in an Elekta linac (producing 6 and 10 MV photon beams) are investigated using BEAMnrc Monte Carlo simulations. The degree and effects of this backscattered radiation are assessed by evaluating the changes to the calculated dose in the monitor chamber, and by determining a correction factor for those changes. Additionally, the fluency and energy characteristics of particles entering the monitor chamber from the downstream direction are evaluated by examining BEAMnrc phase-space data. It is shown that the proportion of particles backscattered into the monitor chamber is small (<0.35 %), for all field sizes studied. However, when the backscatter plate is removed from the model linac, these backscattered particles generate a noticeable increase in dose to the monitor chamber (up to approximate to 2.4 % for the 6 MV beam and up to 4.4 % for the 10 MV beam). With its backscatter plate in place, the Elekta linac (operating at 6 and 10 MV) is subject to negligible variation of monitor chamber dose with field size. At these energies, output variations in photon beams produced by the clinical Elekta linear accelerator can be attributed to head scatter alone. Corrections for field-size-dependence of monitor chamber dose are not necessary when running Monte Carlo simulations of the Elekta linac operating at 6 and 10 MV.
Resumo:
Background: Diagnosis of epithelial ovarian cancer (EOC) in young women has major implications including those to their reproductive potential. We evaluated depression, anxiety and body image in patients with stage I EOC treated with fertility sparing surgery (FSS) or radical surgery (RS). We also investigated fertility outcomes after FSS.----- Methods: A retrospective study was undertaken in which 62 patients completed questionnaires related to anxiety, depression, body image and fertility outcomes. Additional information on adjuvant therapy after FSS and RS and demographic details were abstracted from medical records. Both bi and multivariate regression models were used to assess the relationship between demographic, clinical and pathological results and scores for anxiety, depression and body image.----- Results: Thirty-nine patients underwent RS and the rest, FSS. The percentage of patients reporting elevated anxiety and depression (subscores ≥ 11) were 27 % and 5% respectively. The median (inter quartile range) score for body image scale (BIS) was 6 (3-15). None of the demographic or clinical factors examined showed significant association with anxiety and BIS with the exception of ‘time since diagnosis’. For depression, post-menopausal status was the only independent predictor. Among those 23 patients treated by FSS, 14 patients tried to conceive (7 successful), resulting in 7 live births, one termination of pregnancy and one miscarriage.----- Conclusion: This study shows that psychological issues are common in women treated for stage I EOC. Reproduction after FSS is feasible and lead to the birth of healthy babies in about half of patients who wished to have another child. Further prospective studies with standardised instruments are required.
Resumo:
Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.
Resumo:
Professor Christian Langton is a medical physicist at Queensland University of Technology in Brisbane. He has developed a way of preparing children who are about to have either radiotherapy or MRI imaging procedures and is seeking research partners to develop and test these further. This is a great opportunity for nurses interested in research, and who have access to a children’s hospital, to work with Professor Langton on some truly innovative, multidisciplinary research.