952 resultados para RESORBABLE MESH
Resumo:
Alpha polyesters such as poly(L-lactide) and poly(glycolide) are biodegradable materials used in fracture fixation and they need to be assessed for problems associated with their degradation products. This study has compared cell responses to low molecular weight poly(L-lactide) particles, lactate monomer, poly(glycolide) particles and glycolic acid at cytotoxic and sub-cytotoxic concentrations. Murine macrophages were cultured in vitro and the release of lactate dehydrogenase (LDH), prostaglandin E-2 (PGE(2)) and interleukin-1 alpha IL-1alpha was measured following the addition of particles or monomer. Experiments revealed that both the poly(L-lactide) and poly(glycolide) particles gave rise to dose dependent increases in LDH release and an increase in IL-1alpha and PGE(2) release. Comparisons of the poly(L-lactide) particles to the poly(glycolide) particles did not reveal any differences in their stimulation of LDH, IL-1alpha and PGE(2) release. The lactate and glycolate monomers did not increase PGE(2) or IL-1alpha release above control levels. There was no difference in biocompatibility between the poly(L-lactide) and poly(glycolide) degradation products both in particulate and monomeric form. (C) 2003 Kluwer Academic Publishers.
Resumo:
A direct-assembly method to construct three-dimensional (3D) plasmonic nanostructures yields porous plasmonic rolls through the strain-induced self-rolling up of two-dimensional metallic nanopore films. This route is scalable to different hole sizes and film thicknesses, and applicable to a variety of materials, providing general routes towards a diverse family of 3D metamaterials with nano-engineerable optical properties. These plasmonic rolls can be dynamically driven by light irradiation, rolling or unrolling with increasing or decreasing light intensity. Such dynamically controllable 3D plasmonic nanostructures offer opportunities both for sensing and feedback in active nano-actuators. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4711923]