908 resultados para RESONANCE RAMAN-SPECTROSCOPY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study evaluated the use of Raman spectroscopy to identify the spectral differences between normal (N), benign hyperplasia (BPH) and adenocarcinoma (CaP) in fragments of prostate biopsies in vitro with the aim of developing a spectral diagnostic model for tissue classification. A dispersive Raman spectrometer was used with 830 nm wavelength and 80 mW excitation. Following Raman data collection and tissue histopathology (48 fragments diagnosed as N, 43 as BPH and 14 as CaP), two diagnostic models were developed in order to extract diagnostic information: the first using PCA and Mahalanobis analysis techniques and the second one a simplified biochemical model based on spectral features of cholesterol, collagen, smooth muscle cell and adipocyte. Spectral differences between N, BPH and CaP tissues, were observed mainly in the Raman bands associated with proteins, lipids, nucleic and amino acids. The PCA diagnostic model showed a sensitivity and specificity of 100%, which indicates the ability of PCA and Mahalanobis distance techniques to classify tissue changes in vitro. Also, it was found that the relative amount of collagen decreased while the amount of cholesterol and adipocyte increased with severity of the disease. Smooth muscle cell increased in BPH tissue. These characteristics were used for diagnostic purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiparametric Magnetic Resonance Imaging has been increasingly used for detection, localization and staging of prostate cancer over the last years. It combines high-resolution T2 Weighted-Imaging and at least two functional techniques, which include Dynamic Contrast–Enhanced Magnetic Resonance Imaging, Diffusion-Weighted Imaging, and Magnetic Resonance Imaging Spectroscopy. Although the combined use of a pelvic phased-array and an Endorectal Coil is considered the state-of-the-art for Magnetic Resonance Imaging evaluation of prostate cancer, Endorectal Coil is only absolute mandatory for Magnetic Resonance Imaging Spectroscopy at 1.5 T. Sensitivity and specificity levels in cancer detection and localization have been improving with functional technique implementation, compared to T2 Weighted-Imaging alone. It has been particularly useful to evaluate patients with abnormal PSA and negative biopsy. Moreover, the information added by the functional techniques may correlate to cancer aggressiveness and therefore be useful to select patients for focal radiotherapy, prostate sparing surgery, focal ablative therapy and active surveillance. However, more studies are needed to compare the functional techniques and understand the advantages and disadvantages of each one. This article reviews the basic principles of prostatic mp-Magnetic Resonance Imaging, emphasizing its role on detection, staging and active surveillance of prostate cancer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Noble metal powders containing gold and silver have been used for many centuries, providing different colours in the windows of the medieval cathedrals and in ancient Roman glasses. Nowadays, the interest in nanocomposite materials containing noble nanoparticles embedded in dielectric matrices is related with their potential use for a wide range of advanced technological applications. They have been proposed for environmental and biological sensing, tailoring colour of functional coatings, or for surface enhanced Raman spectroscopy. Most of these applications rely on the so-called localised surface plasmon resonance absorption, which is governed by the type of the noble metal nanoparticles, their distribution, size and shape and as well as of the dielectric characteristics of the host matrix. The aim of this work is to study the influence of the composition and thermal annealing on the morphological and structural changes of thin films composed of Ag metal clusters embedded in a dielectric TiO2 matrix. Since changes in size, shape and distribution of the clusters are fundamental parameters for tailoring the properties of plasmonic materials, a set of films with different Ag concentrations was prepared. The optical properties and the thermal behaviour of the films were correlated with the structural and morphological changes promoted by annealing. The films were deposited by DC magnetron sputtering and in order to promote the clustering of the Ag nanoparticles the as-deposited samples were subjected to an in-air annealing protocol. It was demonstrated that the clustering of metallic Ag affects the optical response spectrum and the thermal behaviour of the films.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this work is to evaluate the capabilities and limitations of chemometric methods and other mathematical treatments applied on spectroscopic data and more specifically on paint samples. The uniqueness of the spectroscopic data comes from the fact that they are multivariate - a few thousands variables - and highly correlated. Statistical methods are used to study and discriminate samples. A collection of 34 red paint samples was measured by Infrared and Raman spectroscopy. Data pretreatment and variable selection demonstrated that the use of Standard Normal Variate (SNV), together with removal of the noisy variables by a selection of the wavelengths from 650 to 1830 cm−1 and 2730-3600 cm−1, provided the optimal results for infrared analysis. Principal component analysis (PCA) and hierarchical clusters analysis (HCA) were then used as exploratory techniques to provide evidence of structure in the data, cluster, or detect outliers. With the FTIR spectra, the Principal Components (PCs) correspond to binder types and the presence/absence of calcium carbonate. 83% of the total variance is explained by the four first PCs. As for the Raman spectra, we observe six different clusters corresponding to the different pigment compositions when plotting the first two PCs, which account for 37% and 20% respectively of the total variance. In conclusion, the use of chemometrics for the forensic analysis of paints provides a valuable tool for objective decision-making, a reduction of the possible classification errors, and a better efficiency, having robust results with time saving data treatments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural onyx agate from Mali was investigated in an integrated mineralogical and chemical study to reveal the origin of the unusual black colouration. Detailed studies by polarizing microscopy, scanning electron microscopy and micro-Raman spectroscopy showed that the colour of the dark bands is related to the incorporation of small particles of carbon (low-crystalline graphite) up to 200 nm in size into the cryptocrystalline silica matrix. The dark bands have carbon contents of 1.88 wt.%. The location of the graphite particles is closely related to the primary structural banding in the chalcedony. Cathodoluminescence data shows that the banding is interrupted by small fissures containing secondary hydrothermal quartz. The carbon isotope composition (delta C-13 value of -31.1+/-0.2 parts per thousand) of the carbonaceous material points to an organic precursor. Both the direct hydrothermal formation of graphite from methane under elevated temperature and the graphitization of organic precursors by secondary hydrothermal or metamorphic overprint are possible explanations for the colour of the dark bands. The graphitization of organic precursors results in an intense electron spin resonance line at g(eff) = 2.0026.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A transportable Raman spectrometer was tested for the detection of illicit drugs seized during border controls. In a first step, the analysis methodology was optimized using reference substances such as diacetylmorphine (heroin), cocaine and amphetamine (as powder or liquid forms). Adequate focalisation distance and times of analysis, influence of daylight and artificial light sources, repeatability and limits of detection were studied. In a second step the applications and limitations of the technique to detect the illicit substances in different mixtures and containers was evaluated. Transportable Raman spectroscopy was found to be adequate for a rapid screen of liquids and powders for the detection and identification of controlled substances. Additionally, it had the advantage over other portable techniques, such as ion mobility spectrometry, of being non-destructive and capable of rapid analysis of large quantities of substances through containers such as plastic bags and glass bottles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUME La méthode de la spectroscopie Raman est une technique d'analyse chimique basée sur l'exploitation du phénomène de diffusion de la lumière (light scattering). Ce phénomène fut observé pour la première fois en 1928 par Raman et Krishnan. Ces observations permirent à Raman d'obtenir le Prix Nobel en physique en 1930. L'application de la spectroscopie Raman a été entreprise pour l'analyse du colorant de fibres textiles en acrylique, en coton et en laine de couleurs bleue, rouge et noire. Nous avons ainsi pu confirmer que la technique est adaptée pour l'analyse in situ de traces de taille microscopique. De plus, elle peut être qualifiée de rapide, non destructive et ne nécessite aucune préparation particulière des échantillons. Cependant, le phénomène de la fluorescence s'est révélé être l'inconvénient le plus important. Lors de l'analyse des fibres, différentes conditions analytiques ont été testées et il est apparu qu'elles dépendaient surtout du laser choisi. Son potentiel pour la détection et l'identification des colorants imprégnés dans les fibres a été confirmé dans cette étude. Une banque de données spectrale comprenant soixante colorants de référence a été réalisée dans le but d'identifier le colorant principal imprégné dans les fibres collectées. De plus, l'analyse de différents blocs de couleur, caractérisés par des échantillons d'origine inconnue demandés à diverses personnes, a permis de diviser ces derniers en plusieurs groupes et d'évaluer la rareté des configurations des spectres Raman obtenus. La capacité de la technique Raman à différencier ces échantillons a été évaluée et comparée à celle des méthodes conventionnelles pour l'analyse des fibres textiles, à savoir la micro spectrophotométrie UV-Vis (MSP) et la chromatographie sur couche mince (CCM). La technique Raman s'est révélée être moins discriminatoire que la MSP pour tous les blocs de couleurs considérés. C'est pourquoi dans le cadre d'une séquence analytique nous recommandons l'utilisation du Raman après celle de la méthode d'analyse de la couleur, à partir d'un nombre de sources lasers le plus élevé possible. Finalement, la possibilité de disposer d'instruments équipés avec plusieurs longueurs d'onde d'excitation, outre leur pouvoir de réduire la fluorescence, permet l'exploitation d'un plus grand nombre d'échantillons. ABSTRACT Raman spectroscopy allows for the measurement of the inelastic scattering of light due to the vibrational modes of a molecule when irradiated by an intense monochromatic source such as a laser. Such a phenomenon was observed for the first time by Raman and Krishnan in 1928. For this observation, Raman was awarded with the Nobel Prize in Physics in 1930. The application of Raman spectroscopy has been undertaken for the dye analysis of textile fibers. Blue, black and red acrylics, cottons and wools were examined. The Raman technique presents advantages such as non-destructive nature, fast analysis time, and the possibility of performing microscopic in situ analyses. However, the problem of fluorescence was often encountered. Several aspects were investigated according to the best analytical conditions for every type/color fiber combination. The potential of the technique for the detection and identification of dyes was confirmed. A spectral database of 60 reference dyes was built to detect the main dyes used for the coloration of fiber samples. Particular attention was placed on the discriminating power of the technique. Based on the results from the Raman analysis for the different blocs of color submitted to analyses, it was possible to obtain different classes of fibers according to the general shape of spectra. The ability of Raman spectroscopy to differentiate samples was compared to the one of the conventional techniques used for the analysis of textile fibers, like UV-Vis Microspectrophotometry (UV-Vis MSP) and thin layer chromatography (TLC). The Raman technique resulted to be less discriminative than MSP for every bloc of color considered in this study. Thus, it is recommended to use Raman spectroscopy after MSP and light microscopy to be considered for an analytical sequence. It was shown that using several laser wavelengths allowed for the reduction of fluorescence and for the exploitation of a higher number of samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stress in local isolation structures is studied by micro‐Raman spectroscopy. The results are correlated with predictions of an analytical model for the stress distribution and with cross‐sectional transmission electron microscopy observations. The measurements are performed on structures on which the Si3N4 oxidation mask is still present. The influence of the pitch of the periodic local isolation pattern, consisting of parallel lines, the thickness of the mask, and the length of the bird"s beak on the stress distribution are studied. It is found that compressive stress is present in the Si substrate under the center of the oxidation mask lines, with a magnitude dependent on the width of the lines. Large tensile stress is concentrated under the bird"s beak and is found to increase with decreasing length of the bird"s beak and with increasing thickness of the Si3N4 film.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Raman spectroscopy has been used by fluid inclusionists to: 1) identify and quantitatively determine the relative abundances of gaseous species within fluid inclusions; 2) identify solid phases precipitating from, or accidentally trapped, within fluid inclusions; and 3) determine the detection limits of the C-13/C-12 ratio in the CO2 bearing phase of fluid inclusions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this work is to study the influence of several analytical parameters on the variability of Raman spectra of paint samples. In the present study, microtome thin section and direct (no preparation) analysis are considered as sample preparation. In order to evaluate their influence on the measures, an experimental design such as 'fractional full factorial' with seven factors (including the sampling process) is applied, for a total of 32 experiments representing 160 measures. Once the influence of sample preparation highlighted, a depth profile of a paint sample is carried out by changing the focusing plane in order to measure the colored layer under a clearcoat. This is undertaken in order to avoid sample preparation such a microtome sectioning. Finally, chemometric treatments such as principal component analysis are applied to the resulting spectra. The findings of this study indicate the importance of sample preparation, or more specifically, the surface roughness, on the variability of the measurements on a same sample. Moreover, the depth profile experiment highlights the influence of the refractive index of the upper layer (clearcoat) when measuring through a transparent layer.