989 resultados para REDUCING BACTERIA
Resumo:
Authigenic carbonate deposits have been sampled with the remotely operated vehicle ‘MARUM-QUEST 4000 m’ from five methane seeps between 731 and 1823 m water depth along the convergent Makran continental margin, offshore Pakistan (northern Arabian Sea). Two seeps on the upper slope are located within the oxygen minimum zone (OMZ; ca. 100 to 1100 m water depth), the other sites are situated in oxygenated water below the OMZ (below 1100 m water depth). The carbonate deposits vary with regard to their spatial extent, sedimentary fabrics, and associated seep fauna: Within the OMZ, carbonates are spatially restricted and associated with microbial mats, whereas in the oxygenated zone below the OMZ extensive carbonate crusts are exposed on the seafloor with abundant metazoans (bathymodiolin mussels, tube worms, galatheid crabs). Aragonite and Mg-calcite are the dominant carbonate minerals, forming common early diagenetic microcrystalline cement and clotted to radial-fibrous cement. The δ18Ocarbonate values range from 1.3 to 4.2‰ V-PDB, indicating carbonate precipitation at ambient bottom-water temperature in shallow sediment depth. Extremely low δ13Ccarbonate values (as low − 54.6‰ V-PDB) point to anaerobic oxidation of methane (AOM) as trigger for carbonate precipitation, with biogenic methane as dominant carbon source. Prevalence of biogenic methane in the seepage gas is corroborated by δ13Cmethane values ranging from − 70.3 to − 66.7‰ V-PDB, and also by back-calculations considering δ13Cmethane values of carbonate and incorporated lipid biomarkers. These calculations (Δδ13Cmethane–carbonate, Δδ13CANME–methane, Δδ13CMOX–methane) prove to be useful to assess the carbon stable isotope composition of seeping methane if this has not been determined in the first place; such an approach represents a useful tool to reconstruct fluid composition of ancient seeps. AOM is also revealed by lipid biomarkers of anaerobic methane oxidizing archaea such as crocetane, pentamethylicosane (PMI), and sn2-hydroxyarchaeol strongly depleted in 13C (δ13C values as low as − 127‰ V-PDB). Biomarkers of sulphate-reducing bacteria are also abundant, showing slightly less negative δ13C values, but still significantly 13C-depleted (average values as low as − 101‰). Other bacterial biomarkers, such as bacteriohopanepolyols (BHPs), hopanols, and hopanoic acids are detected in most carbonates, but are particularly common in seep carbonates from the non-OMZ sites. The BHP patterns of these carbonates and their low δ13C values resemble patterns of aerobic methanotrophic bacteria. In the shallower OMZ sites, BHPs revealed much lower contents and varying compositions, most likely reflecting other sources than aerobic methanotrophic bacteria. 230Th/U carbonate ages indicate that AOM-induced carbonate precipitation at the deeper non-OMZ seeps occurred mainly during the late Pleistocene-Holocene transition, i.e. between 19 and 15 ka before present, when the global sea level was lower than today.
Resumo:
Silver Bow Creek (SBC) flows into the Warm Springs Ponds Operable Unit (WSPOU), where various containment cells are used to precipitate copper and other metals (e.g., Cd, Cu, Mn, Pb, Zn). Lime is added seasonally to increase the pH and assist in removal of metals from the water column. Although the WSPOU is effective at removing copper and other cationic trace metals, concentrations of dissolved arsenic exiting the facility are often above the site specific standard, 20 20 ug/L, during low-flow periods each summer and fall. This thesis is a continuation of arsenic geochemistry studies by Montana Tech in the WSPOU. Field work focused on Pond 3, the largest and first in the series of treatment ponds. Shallow groundwater was sampled from 8 PVC piezometers located near the south end of Pond 3. Three sediment pore-water diffusion samplers (“peepers”) were also deployed at the south end of Pond 3 to examine vertical gradients in chemistry in the top 25 cm of the pond sediment. In general, the pH and Eh values of the shallow groundwater and sediment pore-water were less than in the pond water. Concentrations of arsenic were generally higher in subsurface water, and tended to pass through a maximum (up to 530 g/L) about 10 cm below the sediment-water interface. In the peeper cells, there was a strong positive correlation between dissolved As and dissolved Fe, and an inverse correlation with sulfate. Therefore, the zone of arsenic release corresponds to a zone of bacterial Fe and sulfate reduction in the shallow, organic-rich sediment. Redox speciation of arsenic shows that arsenate (As(V)) is dominant in the pond, and arsenite (As(III)) is dominant in the subsurface water. A series of laboratory experiments with pH adjustment were completed using SBC water collected near the inlet to the WSPOU as well as water and shallow sediment collected from Pond 3. Water ± sediment mesocosms were set up in 1-L Nalgene bottles (closed system) or a 20-L aquarium (open system), both with continuous stirring. The pH of the mesocosm was adjusted by addition of NaOH or HNO3 acid. The closed system provided better pH control since the water was not in contact with the atmosphere, which prevented exchange of carbon dioxide. In both the closed and open systems, dissolved arsenic concentrations either decreased or stayed roughly the same with increase in pH to values > 11. Therefore, the release of dissolved As into the treatment ponds in low-flow periods is not due to changes in pH alone. All of these results support the hypothesis that the arsenic release in WSPOU is linked to microbial reduction of ferric oxide minerals in the organic-rich sediment. Upwards diffusion of dissolved As from the sediment pore-water into the pond water is the most likely explanation for the increase in As concentration of the WSPOU in low-flow periods.
Resumo:
The use of biological processes with the aim of the recovery of gold from low-concentration solutions derived from leaching of secondary sources is gaining increasing importance owing to the scarcity of the primary resources and the economic and environmental advantages usually presented by these methods. Thus, the addition in batch and continuous processes of different solutions containing biogenic sulphide, which was generated by the activity of sulphate-reducing bacteria (SRB), to gold(III) solutions was investigated for that purpose. In the batch experiments, AuS nanoparticles with sizes of between 6 and 14 nm were obtained (corresponding to 100% removal of Au(III) from solution) if the biogenic sulphide was generated in a typical nutrient medium for SRB, whereas Au(0) nanoparticles with sizes of below 8 nm were obtained (corresponding to 62% removal of Au(III)) if effluent from a SRB bioremediation process for treating acid mine drainage (AMD) was used instead. These results stimulated the development of a continuous process of addition, in which two sulphide-rich effluents, which resulted from a SRB bioremediation process for treating two types of AMD (from a uranium mine and a polysulphide mine), were tested. In both cases, Au(0) nanoparticles with sizes of between 6 and 15 nm were mainly obtained, and the percentage removal of Au(III) from solution ranged from 76% to 100%. The processes described allow the simultaneous treatment of AMD and recovery of metallic gold nanoparticles, which are a product with a wide range of applications (e.g., in medicine, optical devices and catalysis) and high economic value. The synthesis process described in this work can be considered as novel, because it is the first time, to our knowledge, that the use of effluent from a SRB bioremediation process has been reported for the recovery of gold(III) as gold(0) nanoparticles.
Resumo:
Exponential growth of genomic data in the last two decades has made manual analyses impractical for all but trial studies. As genomic analyses have become more sophisticated, and move toward comparisons across large datasets, computational approaches have become essential. One of the most important biological questions is to understand the mechanisms underlying gene regulation. Genetic regulation is commonly investigated and modelled through the use of transcriptional regulatory network (TRN) structures. These model the regulatory interactions between two key components: transcription factors (TFs) and the target genes (TGs) they regulate. Transcriptional regulatory networks have proven to be invaluable scientific tools in Bioinformatics. When used in conjunction with comparative genomics, they have provided substantial insights into the evolution of regulatory interactions. Current approaches to regulatory network inference, however, omit two additional key entities: promoters and transcription factor binding sites (TFBSs). In this study, we attempted to explore the relationships among these regulatory components in bacteria. Our primary goal was to identify relationships that can assist in reducing the high false positive rates associated with transcription factor binding site predictions and thereupon enhance the reliability of the inferred transcription regulatory networks. In our preliminary exploration of relationships between the key regulatory components in Escherichia coli transcription, we discovered a number of potentially useful features. The combination of location score and sequence dissimilarity scores increased de novo binding site prediction accuracy by 13.6%. Another important observation made was with regards to the relationship between transcription factors grouped by their regulatory role and corresponding promoter strength. Our study of E.coli ��70 promoters, found support at the 0.1 significance level for our hypothesis | that weak promoters are preferentially associated with activator binding sites to enhance gene expression, whilst strong promoters have more repressor binding sites to repress or inhibit gene transcription. Although the observations were specific to �70, they nevertheless strongly encourage additional investigations when more experimentally confirmed data are available. In our preliminary exploration of relationships between the key regulatory components in E.coli transcription, we discovered a number of potentially useful features { some of which proved successful in reducing the number of false positives when applied to re-evaluate binding site predictions. Of chief interest was the relationship observed between promoter strength and TFs with respect to their regulatory role. Based on the common assumption, where promoter homology positively correlates with transcription rate, we hypothesised that weak promoters would have more transcription factors that enhance gene expression, whilst strong promoters would have more repressor binding sites. The t-tests assessed for E.coli �70 promoters returned a p-value of 0.072, which at 0.1 significance level suggested support for our (alternative) hypothesis; albeit this trend may only be present for promoters where corresponding TFBSs are either all repressors or all activators. Nevertheless, such suggestive results strongly encourage additional investigations when more experimentally confirmed data will become available. Much of the remainder of the thesis concerns a machine learning study of binding site prediction, using the SVM and kernel methods, principally the spectrum kernel. Spectrum kernels have been successfully applied in previous studies of protein classification [91, 92], as well as the related problem of promoter predictions [59], and we have here successfully applied the technique to refining TFBS predictions. The advantages provided by the SVM classifier were best seen in `moderately'-conserved transcription factor binding sites as represented by our E.coli CRP case study. Inclusion of additional position feature attributes further increased accuracy by 9.1% but more notable was the considerable decrease in false positive rate from 0.8 to 0.5 while retaining 0.9 sensitivity. Improved prediction of transcription factor binding sites is in turn extremely valuable in improving inference of regulatory relationships, a problem notoriously prone to false positive predictions. Here, the number of false regulatory interactions inferred using the conventional two-component model was substantially reduced when we integrated de novo transcription factor binding site predictions as an additional criterion for acceptance in a case study of inference in the Fur regulon. This initial work was extended to a comparative study of the iron regulatory system across 20 Yersinia strains. This work revealed interesting, strain-specific difierences, especially between pathogenic and non-pathogenic strains. Such difierences were made clear through interactive visualisations using the TRNDifi software developed as part of this work, and would have remained undetected using conventional methods. This approach led to the nomination of the Yfe iron-uptake system as a candidate for further wet-lab experimentation due to its potential active functionality in non-pathogens and its known participation in full virulence of the bubonic plague strain. Building on this work, we introduced novel structures we have labelled as `regulatory trees', inspired by the phylogenetic tree concept. Instead of using gene or protein sequence similarity, the regulatory trees were constructed based on the number of similar regulatory interactions. While the common phylogentic trees convey information regarding changes in gene repertoire, which we might regard being analogous to `hardware', the regulatory tree informs us of the changes in regulatory circuitry, in some respects analogous to `software'. In this context, we explored the `pan-regulatory network' for the Fur system, the entire set of regulatory interactions found for the Fur transcription factor across a group of genomes. In the pan-regulatory network, emphasis is placed on how the regulatory network for each target genome is inferred from multiple sources instead of a single source, as is the common approach. The benefit of using multiple reference networks, is a more comprehensive survey of the relationships, and increased confidence in the regulatory interactions predicted. In the present study, we distinguish between relationships found across the full set of genomes as the `core-regulatory-set', and interactions found only in a subset of genomes explored as the `sub-regulatory-set'. We found nine Fur target gene clusters present across the four genomes studied, this core set potentially identifying basic regulatory processes essential for survival. Species level difierences are seen at the sub-regulatory-set level; for example the known virulence factors, YbtA and PchR were found in Y.pestis and P.aerguinosa respectively, but were not present in both E.coli and B.subtilis. Such factors and the iron-uptake systems they regulate, are ideal candidates for wet-lab investigation to determine whether or not they are pathogenic specific. In this study, we employed a broad range of approaches to address our goals and assessed these methods using the Fur regulon as our initial case study. We identified a set of promising feature attributes; demonstrated their success in increasing transcription factor binding site prediction specificity while retaining sensitivity, and showed the importance of binding site predictions in enhancing the reliability of regulatory interaction inferences. Most importantly, these outcomes led to the introduction of a range of visualisations and techniques, which are applicable across the entire bacterial spectrum and can be utilised in studies beyond the understanding of transcriptional regulatory networks.
Resumo:
Bacteriocin-producing lactic acid bacteria and their isolated peptide bacteriocins are of value to control pathogens and spoiling microorganisms in foods and feed. Nisin is the only bacteriocin that is commonly accepted as a food preservative and has a broad spectrum of activity against Gram-positive organisms including spore forming bacteria. In this study nisin induction was studied from two perspectives, induction from inside of the cell and selection of nisin inducible strains with increased nisin induction sensitivity. The results showed that a mutation in the nisin precursor transporter NisT rendered L. lactis incapable of nisin secretion and lead to nisin accumulation inside the cells. Intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin in the cells. Using a nisin sensitive GFP bioassay it could be shown, that the active intracellular nisin could function as an inducer without any detectable release from the cells. The results suggested that nisin can be inserted into the cytoplasmic membrane from inside the cell and activate NisK. This model of two-component regulation may be a general mechanism of how amphiphilic signals activate the histidine kinase sensor and would represent a novel way for a signal transduction pathway to recognize its signal. In addition, nisin induction was studied through the isolation of natural mutants of the GFPuv nisin bioassay strain L. lactis LAC275 using fl uorescence-activated cell sorting (FACS). The isolated mutant strains represent second generation of GFPuv bioassay strains which can allow the detection of nisin at lower levels. The applied aspect of this thesis was focused on the potential of bacteriocins in chicken farming. One aim was to study nisin as a potential growth promoter in chicken feed. Therefore, the lactic acid bacteria of chicken crop and the nisin sensitivity of the isolated strains were tested. It was found that in the crop Lactobacillus reuteri, L. salivarius and L. crispatus were the dominating bacteria and variation in nisin resistance level of these strains was found. This suggested that nisin may be used as growth promoter without wiping out the dominating bacterial species in the crop. As the isolated lactobacilli may serve as bacteria promoting chicken health or reducing zoonoosis and bacteriocin production is one property associated with probiotics, the isolated strains were screened for bacteriocin activity against the pathogen Campylobacter jejuni. The results showed that many of the isolated L. salivarius strains could inhibit the growth of C. jejuni. The bacteriocin of the L. salivarius LAB47 strain, with the strongest activity, was further characterized. Salivaricin 47 is heat-stable and active in pH range 3 to 8, and the molecular mass was estimated to be approximately 3.2 kDa based on tricine SDS-PAGE analysis.
Resumo:
This brief report concentrates on the effect of low pH on the initial stages of decomposition and the conditioning of incoming particulate carbon or detritus by microbes, particularly certain genera of filamentous bacteria. Although many previous reports have concentrated on bacterial decomposition processes, little attention has been given to the composition of the bacterial community and the role of its component parts, particularly in nutrient-poor waters which are provided with sources of organic carbon and reducing power in the form of poor quality detritus.
Resumo:
Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 μg.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher β-glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 °P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.
Resumo:
The decline in viable numbers of Salmonella typhimurium, Yersinia enterocolitica and Listeria monocytogenes in beef cattle slurry is temperature-dependent; they decline more rapidly at 17-degrees-C than at 4-degrees-C. Mesophilic anaerobic digestion caused an initial rapid decline in the viable numbers of Escherichia coli, Salm. typhimurium, Y. enterocolitica and L. monocytogenes. This was followed by a period in which the viable numbers were not reduced by 90%. The T90 values of E. coli, Salm. typhimurium and Y. enterocolitica ranged from 0.7 to 0.9 d during batch digestion and 1.1 to 2-5 d during semi-continuous digestion. Listeria monocytogenes had a significantly higher mean T90 value during semi-continuous digestion (35.7 d) than batch digestion (12.3 d). Anaerobic digestion had little effect in reducing the viable numbers of Campylobacter jejuni.
Resumo:
Methicillin resistant Staphylococcus aureus (MRSA) bacteria have emerged in the early 1980's in numerous health care institutions around the world. The main transmission mechanism within hospitals and healthcare facilities is through the hands of health care workers. Resistant to several antibiotics, the MRSA is one of the most feared pathogens in the hospital setting since it is very difficult to eradicate with the standard treatments. There are still a limited number of anti-MRSA antibiotics but the first cases of resistance to these compounds have already been reported and their frequency is likely to increase in the coming years. Every year, the MRSA infections result in major human and financial costs, due to the high associated mortality and expenses related to the required care. Measures towards a faster detection of resistant bacteria and establishment of appropriate antibiotic treatment parameters are fundamental. Also as part as infection prevention, diminution of bacteria present on the commonly touched surfaces could also limit the spread and selection of antibiotic resistant bacteria. During my thesis, projects were developed around MRSA and antibiotic resistance investigation using innovative technologies. The thesis was subdivided in three main parts with the use of atomic force microscopy AFM for antibiotic resistance detection in part 1, the importance of the bacterial inoculum size in the selection of antibiotic resistance in part 2 and the testing of antimicrobial surfaces creating by sputtering copper onto polyester in part 3. In part 1 the AFM was used two different ways, first for the measurement of stiffness (elasticity) of bacteria and second as a nanosensor for antibiotic susceptibility testing. The stiffness of MRSA with different susceptibility profiles to vancomycin was investigated using the stiffness tomography mode of the AFM and results have demonstrated and increased stiffness in the vancomycin resistant strains that also paralleled with increased thickness of the bacterial cell wall. Parts of the AFM were also used to build a new antibiotic susceptibility-testing device. This nano sensor was able to measure vibrations emitted from living bacteria that ceased definitively upon antibiotic exposure to which they were susceptible but restarted after antibiotic removal to which they were resistant, allowing in a matter of minute the assessment of antibiotic susceptibility determination. In part 2 the inoculum effect (IE) of vancomycin, daptomycin and linezolid and its importance in antibiotic resistance selection was investigated with MRSA during a 15 days of cycling experiment. Results indicated that a high bacterial inoculum and a prolonged antibiotic exposure were two key factors in the in vitro antibiotic resistance selection in MRSA and should be taken into consideration when choosing the drug treatment. Finally in part 3 bactericidal textile surfaces were investigated against MRSA. Polyesters coated after 160 seconds of copper sputtering have demonstrated a high bactericidal activity reducing the bacterial load of at least 3 logio after one hour of contact. -- Au cours des dernières décennies, des bactéries multirésistantes aux antibiotiques (BMR) ont émergé dans les hôpitaux du monde entier. Depuis lors, le nombre de BMR et la prévalence des infections liées aux soins (IAS) continuent de croître et sont associés à une augmentation des taux de morbidité et de mortalité ainsi qu'à des coûts élevés. De plus, le nombre de résistance à différentes classes d'antibiotiques a également augmenté parmi les BMR, limitant ainsi les options thérapeutiques disponibles lorsqu'elles ont liées a des infections. Des mesures visant une détection plus rapide des bactéries résistantes ainsi que l'établissement des paramètres de traitement antibiotiques adéquats sont primordiales lors d'infections déjà présentes. Dans une optique de prévention, la diminution des bactéries présentes sur les surfaces communément touchées pourrait aussi freiner la dissémination et l'évolution des bactéries résistantes. Durant ma thèse, différents projets incluant des nouvelles technologies et évoluant autour de la résistance antibiotique ont été traités. Des nouvelles technologies telles que le microscope à force atomique (AFM) et la pulvérisation cathodique de cuivre (PCC) ont été utilisées, et le Staphylococcus aureus résistant à la méticilline (SARM) a été la principale BMR étudiée. Deux grandes lignes de recherche ont été développées; la première visant à détecter la résistance antibiotique plus rapidement avec l'AFM et la seconde visant à prévenir la dissémination des BMR avec des surfaces crées grâce à la PCC. L'AFM a tout d'abord été utilisé en tant que microscope à sonde locale afin d'investiguer la résistance à la vancomycine chez les SARMs. Les résultats ont démontré que la rigidité de la paroi augmentait avec la résistance à la vancomycine et que celle-ci corrélait aussi avec une augmentation de l'épaisseur des parois, vérifiée grâce à la microscopie électronique. Des parties d'un AFM ont été ensuite utilisées afin de créer un nouveau dispositif de test de sensibilité aux antibiotiques, un nanocapteur. Ce nanocapteur mesure des vibrations produites par les bactéries vivantes. Après l'ajout d'antibiotique, les vibrations cessent définitivement chez les bactéries sensibles à l'antibiotique. En revanche pour les bactéries résistantes, les vibrations reprennent après le retrait de l'antibiotique dans le milieu permettant ainsi, en l'espace de minutes de détecter la sensibilité de la bactérie à un antibiotique. La PCC a été utilisée afin de créer des surfaces bactéricides pour la prévention de la viabilité des BMR sur des surfaces inertes. Des polyesters finement recouverts de cuivre (Cu), connu pour ses propriétés bactéricides, ont été produits et testés contre des SARMs. Une méthode de détection de viabilité des bactéries sur ces surfaces a été mise au point, et les polyesters obtenus après 160 secondes de pulvérisation au Cu ont démontré une excellente activité bactéricide, diminuant la charge bactérienne d'au moins 3 logio après une heure de contact. En conclusion, l'utilisation de nouvelles technologies nous a permis d'évoluer vers de méthodes de détection de la résistance antibiotique plus rapides ainsi que vers le développement d'un nouveau type de surface bactéricide, dans le but d'améliorer le diagnostic et la gestion des BMR.
Resumo:
Cell immnhilizatinn technology in a rapidly expanding arna in the endeavour of microbial fnrmentatiwn.During the lnmt 15 years anveral prnceafinn have been developed and more are in developmental atage of approaching commercial utilizatinn.In the present programme it was planned to develop an optimized process for the innobilization of alpha amylase producing Bacillus polymyxa (CBTB 25) an isolate obtained from Cochin University campus primarily for the production of alpha-amylase.Optimal concentration of support material that attributaa stability and maximal activity to the immobilized cell beads was determined using different concentrations of sodium aliginate as support and estimation of amylase production.An overeall assessment of the data obtained for the various studies conducted denotes that immobilized cells synthesize alpha-amylase at comparable rates with free cells and produce reducing sugara at a higher level than free cells.Results indicated that both phosphate and citrate buffers could be used for disrupting the immobilized beads since they enforced maximal release of cells through leaching from the beads within one hour.On comparative analysis it was observed that immobilized cells could synthesize alpha amylase at similar levels with free cells of B.polymyxa.On Co-immobilization of B.Polymyxa with S.cerevisiae,the co-immobilizate beads could effeciently convert starch directly to ethanol with a yield of 14.8% at 1 : 2 ratio.
Resumo:
The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.
Resumo:
Aim. To investigate the root canal microbiota of primary teeth with apical periodontitis and the in vivo antimicrobial effects of a calcium hydroxide/chlorhexidine paste used as root canal dressing. Design. Baseline samples were collected from 30 root canals of primary teeth with apical periodontitis. Then, the root canals were filled with a calcium hydroxide paste containing 1% chlorhexidine for 14 days and the second bacteriologic samples were taken prior to root canal filling. Samples were submitted to microbiologic culture procedure to detect root canal bacteria and processed for checkerboard DNA-DNA hybridization. Results. Baseline microbial culture revealed high prevalence and cfu number of anaerobic, black-pigmented bacteroides, Streptococcus, and aerobic microorganisms. Following root canal dressing, the overall number of cfu was dramatically diminished compared to initial contamination (P < 0.05), although prevalence did not change (P > 0.05). Of 35 probes used for checkerboard DNA-DNA hybridization, 31 (88.57%) were present at baseline, and following root canal dressing, the number of positive probes reduced to 13 (37.14%). Similarly, the number of bacterial cells diminished folowing application of calcium hydroxide/chlorhexidine root canal dressing (P = 0.006). Conclusion. Apical periodontitis is caused by a polymicrobial infection, and a calcium hydroxide/chlorhexidine paste is effective in reducing the number of bacteria inside root canals when applied as a root canal dressing.
Resumo:
Aims: To investigate the effect of the biosurfactants surfactin and rhamnolipids on the adhesion of the food pathogens Listeria monocytogenes, Enterobacter sakazakii and Salmonella Enteritidis to stainless steel and polypropylene surfaces. Methods and Results: Quantification of bacterial adhesion was performed using the crystal violet staining technique. Preconditioning of surfaces with surfactin caused a reduction on the number of adhered cells of Ent. sakazakii and L. monocytogenes on stainless steel. The most significant result was obtained with L. monocytogenes where number of adhered cells was reduced by 10(2) CFU cm(-2). On polypropylene, surfactin showed a significant decrease on the adhesion of all strains. The adsorption of surfactin on polystyrene also reduces the adhesion of L. monocytogenes and Salm. Enteritidis growing cells. For short contact periods using nongrowing cells or longer contact periods with growing cells, surfactin was able to delay bacterial adhesion. Conclusions: The prior adsorption of surfactin to solid surfaces contributes on reducing colonization of the pathogenic bacteria. Significance and Impact of the Study: This is the first work investigating the effect of surfactin on the adhesion of the food pathogens L. monocytogenes, Ent. sakazakii and Salm. Enteritidis to polypropylene and stainless steel surfaces.