987 resultados para REDOX STATE UNBALANCE
Resumo:
The electrochemical redox behavior of usnic acid, mainly known for its antibiotic activity, has been investigated using cyclic, differential pulse and square wave voltammetry in aqueous electrolyte. These studies were carried out by solid state voltammetry with the solid mechanically attached on the surface of a glassy carbon electrode and at different pH values. Usnic acid did not present any reduction reaction. The pH-dependent electrochemical oxidation occurs in three steps, one electron and one proton irreversible processes, assigned to each of the hydroxyl groups in the molecule. Adsorption of the non-electroactive oxidation product was also observed, blocking the electrode surface. An oxidation mechanism was proposed and electroanalytical methodology was developed to determine usnic acid.
Resumo:
A surface confined redox group contributes to an interfacial charging (quantifiable by redox capacitance) that can be sensitively probed by impedance derived capacitance spectroscopy. In generating mixed molecular films comprising such redox groups, together with specific recognition elements (here antibodies), this charging signal is able to sensitively transduce the recognition and binding of specific analytes. This novel transduction method, exemplified here with C-reactive protein, an important biomarker of cardiac status and general trauma, is equally applicable to any suitably prepared interfacial combination of redox reporter and receptor. The assays are label free, ultrasensitive, highly specific and accompanied by a good linear range. © 2013 Elsevier B.V.
Resumo:
Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. Structured digital abstract XfDsbC and XfDsbC bind by x ray scattering (View Interaction: 1, 2) XfDsbC and XfDsbC bind by molecular sieving (View interaction) XfDsbC and XfDsbC bind by comigration in non denaturing gel electrophoresis (View interaction) XfDsbC and XfDsbC bind by cross-linking study (View Interaction: 1, 2) XfDsbC and XfDsbC bind by dynamic light scattering (View Interaction: 1, 2)
Resumo:
The aim of this Ph.D. project has been the photophysical and photochemical characterization of new photo- and redox-active supramolecular systems. In particular we studied two different classes of compounds: metal complexes and dendrimers. Two different families of bis-cyclometalated neutral Ir(III) complexes are presented and their photophysical properties are discussed. The first family of complexes contains two 2-phenylpyridyl (ppy) or 2-(4,6-difluorophenyl)pyridyl (F2ppy) cyclometalated ligands and an ancillary ligand constituted by a phenol-oxazoline (phox), which can be substituted in the third position with a fluorine group (Fphox). In the second part of this study, we present another family of bis-cyclometalated Ir(III) complexes in which the ancillary ligand could be a chiral or an achiral bis-oxazoline (box). We report on their structural, electrochemical, photophysical, and photochemical properties. Complexes containing phox and Fphox ancillary ligands show blue luminescence with very high quantum yield, while complexes with box ligands do not show particularly interesting photophysical properties. Surprisingly these complexes give an unexpected photoreaction when irradiated with UV light in presence of dioxygen. This photoreaction originates a stable, strong blue emitting and particularly interesting photoproduct. Three successive generations of a family of polyethyleneglycol (PEG)-coated Pd(II) tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes are presented, and their ability to sensitize singlet oxygen and inflict cellular photodamage are discussed. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency, that approximate the unity, in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. Nevertheless, when compared against a commonly used singlet oxygen sensitizer, as Photofrin, the phosphorescent probes were found to be non-phototoxic. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. The results suggest that protected phosphorescent probes can be safely used for oxygen measurements in biological systems in vivo. A new family of two photoswitchable (G0(Azo) and G1(Azo)) dendrimers with an azobenzene core, two cyclam units as coordination sites for metal ions, and luminescent naphthalene units at the periphery have been characterized and their coordination abilities have been studied. Because of their proximity, the various functional groups of the dendrimer may interact, so that the properties of the dendrimers are different from those exhibited by the separated functional units. Both the naphthalene fluorescence and the azobenzene photoisomerization can be observed in the dendrimer, but it has been shown that (i) the fluorescent excited state of the naphthalene units is substantially quenched by excimer and exciplex formation and by energy transfer to the azobenzene units, and (ii) in the latter case the fluorescence quenching is accompanied by the photosensitized isomerization of the trans → cis, and, with higher efficiency, the cis → trans reaction. Complexation of these dendrimers, both trans and cis isomers, with Zn(II) ions shows that complexes of 1:1 and 2:1 metal per dendrimer stoichiometry are formed showing different photophysical and photochemical properties compared to the corresponding free ligands. Practically unitary efficiency of the sensitized isomerization of trans → cis and cis → trans reaction is observed, as well as a slight increase in the naphthalene monomer emission. These results are consistent with the coordination of the cyclam amine units with Zn(II), which prevents exciplex formation. No indication of a concomitant coordination of both cyclam to a single metal ion has been obtained both for trans and cis isomer.
Resumo:
Die optische Eigenschaften sowie der Oberflächenverstärkungseffekt von rauen Metalloberflächen sowie Nanopartikeln wurden intensiv für den infraroten Bereich des Spektrums in der Literatur diskutiert. Für die Präparation solcher Oberflächen gibt es prinzipiell zwei verschiedene Strategien, zum einen können die Nanopartikel zuerst ex-situ synthetisiert werden, der zweite Ansatz beruht darauf, dass die Nanopartikel in-situ hergestellt und aufgewachsen werden. Hierbei wurden beide Ansätze ausgetestet, dabei stellte sich heraus, dass man nur mittels der in-situ Synthese der Goldnanopartikel in der Lage ist nanostrukturierte Oberflächen zu erhalten, welche elektronisch leitfähig sind, nicht zu rau sind, um eine Membranbildung zu ermöglichen und gleichzeitig einen optimalen Oberflächenverstärkungseffekt zeigen. Obwohl keine ideale Form der Nanopartikel mittels der in-situ Synthese erhalten werden können, verhalten sich diese dennoch entsprechend der Theorie des Oberflächenverstärkungseffekts. Optimierungen der Form und Grösse der Nanopartikel führten in dieser Arbeit zu einer Optimierung des Verstärkungseffekts. Solche optimierten Oberflächen konnten einfach reproduziert werden und zeichnen sich durch eine hohe Stabilität aus. Der so erhaltene Oberflächenverstärkungseffekt beträgt absolut 128 verglichen mit dem belegten ATR-Kristall ohne Nanopartikel oder etwa 6 mal, verglichen mit der Oberfläche, die bis jetzt auch in unserer Gruppe verwendet wurde. Daher können nun Spektren erhalten werden, welche ein deutlich besseres Signal zu Rauschverhältnis (SNR) aufweisen, was die Auswertung und Bearbeitung der erhaltenen Spektren deutlich vereinfacht und verkürzt.rnNach der Optimierung der verwendeten Metalloberfläche und der verwendeten Messparameter am Beispiel von Cytochrom C wurde nun an der Oberflächenbelegung der deutlich größeren Cytochrom c Oxidase gearbeitet. Hierfür wurde der DTNTA-Linker ex-situ synthetisiert. Anschließend wurden gemischte Monolagen (self assembeld monolayers) aus DTNTA und DTP hergestellt. Die NTA-Funktionalität ist für die Anbindung der CcO mit der his-tag Technologie verantwortlich. Die Kriterien für eine optimale Linkerkonzentration waren die elektrischen Parameter der Schicht vor und nach Rekonstitution in eine Lipidmembran, sowie Elektronentransferraten bestimmt durch elektrochemische Messungen. Erst mit diesem optimierten System, welches zuverlässig und reproduzierbar funktioniert, konnten weitere Messungen an der CcO begonnen werden. Aus elektrochemischen Messungen war bekannt, dass die CcO durch direkten Elektronentransfer unter Sauerstoffsättigung in einen aktivierten Zustand überführt werden kann. Dieser aktivierte Zustand zeichnet sich durch eine Verschiebung der Redoxpotentiale um etwa 400mV gegenüber dem aus Gleichgewichts-Titrationen bekannten Redoxpotential aus. Durch SEIRAS konnte festgestellt werden, dass die Reduktion bzw. Oxidation aller Redoxzentren tatsächlich bei den in der Cyclovoltammetrie gemessenen Potentialen erfolgt. Außerdem ergaben die SEIRA-Spektren, dass durch direkten Elektronentransfer gravierende Konformationsänderungen innerhalb des Proteins stattfinden. rnBisher war man davon ausgegangen, aufgrund des Elektronentransfers mittels Mediatoren, dass nur minimale Konformationsänderungen beteiligt sind. Vor allem konnte erstmaligrnder aktivierte und nicht aktivierte Zustand der Cytochrom c Oxidase spektroskopisch nachweisen werden.rn
Resumo:
This dissertation involves study of various aspects of sulfoxide chemistry. Specifically designed t-butyl and propanenitrile sulfoxides tethered to indole-2-carboxamide were used as a source of intramolecular sulfenylating agents to synthesize novel indolo[3,2-b]-1-5-benzothiazepinones which are structurally analogous to the other biologically active benzothiazepinones. This study reveals that the intramolecular cyclization of sulfoxide follows an electrophilic sulfenylation (Sulfoxide Electrophilic Sulfenylation, SES) reaction pathway. Evidence of the absence of sulfenic acid as a transient reactive intermediate in such intramolecular cyclization is also provided. In another study, sulfoxide was used as a “protecting group” of thioether to synthesize 8-membered, indole substituted, thiazocine-2-acetic acid derivative via Ring Closing Metathesis (RCM). Protection (oxidation) of inert (to RCM) sulfide to sulfoxide followed by RCM produced cyclized product in good yields. Deprotection (reduction) of sulfoxide was achieved using Lawessons Reagent (L.R.). Application of the sulfide-sulfoxide redox cycle to solve the existing difficulties in using RCM methodology to thioethers is illustrated. A new design of a “molecular brake”, based on the sulfide-sulfoxide redox cycle is described. N-Ar rotation in simple isoindolines is controlled by the oxidation state of the proximate sulfur atom. Sulfide [S(II)] shows “free” [brake OFF] N-Ar rotation whereas sulfoxide displayed hindered [brake ON] N-Ar rotation. The semi-empirical molecular orbital (PM3) calculations revealed concerted pyramidalization of amidic nitrogen with N-Ar rotation.
Resumo:
The anionic cluster Pt-19(CO)(22)](4-) (1), of pentagonal symmetry, reacts with CO and AuPPh3+ fragments. Upon increasing the Au:Pt-19, molar ratio, different species are sequentially formed, but only the last two members of the series could be characterized by X-ray diffraction, namely, Pt-19(CO)(24)(mu(4)-AuPPh3)(3)](-) (2) and Pt-19(CO)(24){mu(4)-Au-2(PPh3)(2)}(2)] (3).The metallic framework of the starting cluster is completely modified after the addition of CO and AuL+, and both products display the same platinum core of trigonal symmetry, with closely packed metal atoms. The three AuL+ units cap three different square faces in 2, whereas four AuL+ fragments are grouped in two independent bimetallic units in the neutral cluster 3. Electrochemical and spectroelectrochemical studies on 2 showed that its redox ability is comparable with that of the homometallic 1.
Resumo:
Two benzodifuran (BDF)-coupled spiropyran (SP) systems and their BDF reference compounds were obtained in good yields through HuisgenMeldalSharpless click chemistry and then subjected to investigation of their electrochemical and photophysical properties. In both SP and merocyanine (MC) forms of the coupled molecules, the BDF-based emission is quenched to around 1 of the quantum yield of emission from the BDF reference compounds. Based on electrochemical data, this quenching is attributed to oxidative electron-transfer quenching. Irradiation at 366nm results in ring opening to the MC forms of the BDF-coupled SP compounds and the SP reference compound with a quantum efficiency of about 50. The rate constants for the thermal ring closing are approximately 3.4x103s1. However, in the photostationary states the MC fractions of the coupled molecules are substantially lower than that of the reference SP compound, attributed to the observed acceleration of the ring-closing reaction upon irradiation. As irradiation at 366nm invariably also excites higher-energy transitions of the BDF units in the coupled compounds, the ring-opening reaction is accelerated relative to the SP reference, which results in lower MC fractions in the photostationary state. Reversible photochromism of these BDF-coupled SP compounds renders them promising in the field of molecular switches.
Resumo:
Electrochemical and photophysical analysis of new donoracceptor systems 2 and 3, in which a benzothiadiazole (BTD) unit is covalently linked to a tetrathiafulvalene (TTF) core, have verified that the lowest excited state can be ascribed to an intramolecular-charge-transfer (ICT) (TTF)*(benzothiadiazole) transition. Owing to better overlap of the HOMO and LUMO in the fused scaffold of compound 3, the intensity of the 1ICT band is substantially higher compared to that in compound 2. The corresponding CT fluorescence is also observed in both cases. The radical cation TTF+. is easily observed through chemical and electrochemical oxidation by performing steady-state absorption experiments. Interestingly, compound 2 is photo-oxidized under aerobic conditions.
Resumo:
Numerical calculations describing weathering of the Poços de Caldas alkaline complex (Minas Gerais, Brazil) by infiltrating groundwater are carried out for time spans up to two million years in the absence of pyrite, and up to 500,000 years with pyrite present. Deposition of uranium resulting from infiltration of oxygenated, uranium bearing groundwater through the hydrothermally altered phonolitic host rock at the Osamu Utsumi uranium mine is also included in the latter calculation. The calculations are based on the quasi-stationary state approximation to mass conservation equations for pure advective transport. This approximation enables the prediction of solute concentrations, mineral abundances and porosity as functions of time and distance over geologic time spans. Mineral reactions are described by kinetic rate laws for both precipitation and dissolution. Homogeneous equilibrium is assumed to be maintained within the aqueous phase. No other constraints are imposed on the calculations other than the initial composition of the unaltered host rock and the composition of the inlet fluid, taken as rainwater modified by percolation through a soil zone. The results are in qualitative agreement with field observations at the Osamu Utsumi uranium mine. They predict a lateritic cover followed by a highly porous saprolitic zone, a zone of oxidized rock with pyrite replaced by iron-hydroxide, a sharp redox front at which uranium is deposited, and the reduced unweathered host rock. Uranium is deposited in a narrow zone located on the reduced side of the redox front in association with pyrite, in agreement with field observations. The calculations predict the formation of a broad dissolution front of primary kaolinite that penetrates deep into the host rock accompanied by the precipitation of secondary illite. Secondary kaolinite occurs in a saprolitic zone near the surface and in the vicinity of the redox front. Gibbsite forms a bi-modal distribution consisting of a maximum near the surface followed by a thin tongue extending downward into the weathered profile in agreement with field observations. The results are found to be insensitive to the kinetic rate constants used to describe mineral reactions.
Resumo:
SoxR is a transcription activator governing a cellular response to superoxide and nitric oxide in Escherichia coli. SoxR protein is a homodimer, and each monomer has a redox-active [2Fe–2S] cluster. Oxidation and reduction of the [2Fe–2S] clusters can reversibly activate and inactivate SoxR transcriptional activity. Here, we use electron paramagnetic resonance spectroscopy to follow the redox-switching process of SoxR protein in vivo. SoxR [2Fe–2S] clusters were in the fully reduced state during normal aerobic growth, but were completely oxidized after only 2-min aerobic exposure of the cells to superoxide-generating agents such as paraquat. The oxidized SoxR [2Fe–2S] clusters were rapidly re-reduced in vivo once the oxidative stress was removed. The in vivo kinetics of SoxR [2Fe–2S] cluster oxidation and reduction exactly paralleled the increase and decrease of transcription of soxS, the target gene for SoxR. The kinetic analysis also revealed that an oxidative stress-linked decrease in soxS mRNA stability contributes to the rapid attainment of a new steady state after SoxR activation. Such a redox stress-related change in soxS mRNA stability may represent a new level of biological control.
Resumo:
We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.
Resumo:
Studies of initial activities of carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum show that CODH is mostly inactive at redox potentials higher than −300 mV. Initial activities measured at a wide range of redox potentials (0–500 mV) fit a function corresponding to the Nernst equation with a midpoint potential of −316 mV. Previously, extensive EPR studies of CODH have suggested that CODH has three distinct redox states: (i) a spin-coupled state at −60 to −300 mV that gives rise to an EPR signal termed Cred1; (ii) uncoupled states at <−320 mV in the absence of CO2 referred to as Cunc; and (iii) another spin-coupled state at <−320 mV in the presence of CO2 that gives rise to an EPR signal termed Cred2B. Because there is no initial CODH activity at potentials that give rise to Cred1, the state (Cred1) is not involved in the catalytic mechanism of this enzyme. At potentials more positive than −380 mV, CODH recovers its full activity over time when incubated with CO. This reductant-dependent conversion of CODH from an inactive to an active form is referred to hereafter as “autocatalysis.” Analyses of the autocatalytic activation process of CODH suggest that the autocatalysis is initiated by a small fraction of activated CODH; the small fraction of active CODH catalyzes CO oxidation and consequently lowers the redox potential of the assay system. This process is accelerated with time because of accumulation of the active enzyme.
Resumo:
A finite difference method for simulating voltammograms of electrochemically driven enzyme catalysis is presented. The method enables any enzyme mechanism to be simulated. The finite difference equations can be represented as a matrix equation containing a nonlinear sparse matrix. This equation has been solved using the software package Mathematica. Our focus is on the use of cyclic voltammetry since this is the most commonly employed electrochemical method used to elucidate mechanisms. The use of cyclic voltammetry to obtain data from systems obeying Michaelis-Menten kinetics is discussed, and we then verify our observations on the Michaelis-Menten system using the finite difference simulation. Finally, we demonstrate how the method can be used to obtain mechanistic information on a real redox enzyme system, the complex bacterial molybdoenzyme xanthine dehydrogenase.
Resumo:
In-situ, synchronous MS/XANES reveals the Pd catalyzed selective aerobic oxidation of crotyl alcohol is regulated by the balance between the oxidation state and reducibility. Dynamic XANES measurements provide a new, rapid method to determine redox kinetics of nanoparticles and identify important parameters to optimize catalyst design. © 2012 American Chemical Society.