951 resultados para RECONSTRUCTION
Resumo:
INTRODUCTION: Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. METHODS: We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40 %/60 % with appropriate noise indices. The weighted volume CT dose index (CTDIvol), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. RESULTS: For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDIvol and DLP were lowered by up to 10.9 % (p < 0.001), 17.9 % (p = 0.005), 20.9 % (p < 0.001), and 21.7 % (p = 0.001), respectively, by using ASIR compared with FBP alone. Image quality and noise were similar for both FBP and ASIR. CONCLUSION: We recommend routine use of iterative reconstruction for neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality.
Resumo:
Introduction: Primary bone sarcomas around the ankle are rare. Due to the proximity of neurovascular structures and limited soft tissue reserves, limb salvage is often not possible. Case report: A 19 yo male presented with pain and a progressive swelling of his ankle. X-rays revealed cortical erosions and an extensive periosteal reaction (sunburst) of the distal fibula. MRI showed a large mass of the fibula invading adjacent soft tissue. The lesion appeared close to the ankle joint, but with the articular cartilage as a barrier and without joint effusion. Core-needle biopsy revealed a high-grade chondroblastic osteosarcoma. No metastases were detected. After presentation at our multidisciplinary sarcoma board, the patient was subjected to neo-adjuvant chemotherapy (AOST 03-331). Without any sign of intra-articular contamination of the ankle joint, surgical treatment consisted of wide resection of the lateral malleolus including a large skin patch, the distal third of the fibula, the lateral surfaces of the tibia and talus as well as the insertion of the lateral ligament on the calcaneus. The distal parts of the anterior, peroneal, and posterior muscular compartments were resected en bloc with the tumor. The defect was reconstructed with tibio-talar and talo-calcanear fusion, bony allograft and a plate. Soft-tissue coverage was achieved with a free fascio-cutaneous flap from the controlateral thigh. Histological analysis revealed clear margins and 50% of tumor necrosis. The oncologic treatment was completed with adjuvant chemotherapy. Conclusion: Wide resection and reconstruction of the lateral malleolus is technically demanding but possible in selected cases. Despite some important functional loss, limb salvage is superior to an amputation.
Resumo:
OBJECTIVES: To refine the classic definition of, and provide a working definition for, congenital high airway obstruction syndrome (CHAOS) and to discuss the various aspects of long-term airway reconstruction, including the range of laryngeal anomalies and the various techniques for reconstruction. DESIGN: Retrospective chart review. PATIENTS: Four children (age range, 2-8 years) with CHAOS who presented to a single tertiary care children's hospital for pediatric airway reconstruction between 1995 and 2000. CONCLUSIONS: To date, CHAOS remains poorly described in the otolaryngologic literature. We propose the following working definition for pediatric cases of CHAOS: any neonate who needs a surgical airway within 1 hour of birth owing to high upper airway (ie, glottic, subglottic, or upper tracheal) obstruction and who cannot be tracheally intubated other than through a persistent tracheoesophageal fistula. Therefore, CHAOS has 3 possible presentations: (1) complete laryngeal atresia without an esophageal fistula, (2) complete laryngeal atresia with a tracheoesophageal fistula, and (3) near-complete high upper airway obstruction. Management of the airway, particularly in regard to long-term reconstruction, in children with CHAOS is complex and challenging.
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
Biological integration of the tendon graft is a crucial prerequisite for successful ACL reconstruction. Histological studies showed that the human ACL remnants contain a cellular capacity for healing potential. The goal of this technical note is to describe an ACL reconstruction technique, using ACL remnants as a biological sleeve for the graft. In case of complete ACL rupture with a large remnant, the tibial tunnel was performed inside and through the ACL tibial stump by careful sequential drilling. Femoral tunnel placement was performed by an outside-in technique. The hamstring graft was kept attached to the tibia and routed through the ACL remnant to the femur. The aim of this technique is the preservation of the biological and mechanical properties of the ACL remnant. In order to preserve large remnants resulting in greater graft coverage, the best period to perform this reconstruction is during the first weeks after the injury.
Resumo:
Purpose: Although several approaches have been already used to reduce radiation dose, CT doses are still among the high doses in radio-diagnostic. Recently, General Electric introduced a new imaging reconstruction technique, adaptive statistical iterative reconstruction (ASIR), allows to taking into account the statistical fluctuation of noise. The benefits of ASIR method were assessed through classic metrics and the evaluations of cardiac structures by radiologists. Methods and materials: A 64-row CT (MDCT) was employed. Catphan600 phantom acquisitions and 10 routine-dose CT examinations performed at 80 kVp were reconstructed with FBP and with 50% of ASIR. Six radiologists then assessed the visibility of main cardiac structures using the visual grading analysis (VGA) method. Results: On phantoms, for a constant value of SD (25 HU), CTDIvol is divided by 2 (8 mGy to 4 mGy) when 50% of ASIR is used. At constant CTDIvol, MTF medium frequencies were also significantly improved. First results indicated that clinical images reconstructed with ASIR had a better overall image quality compared with conventional reconstruction. This means that at constant image quality the radiation dose can be strongly reduced. Conclusion: The first results of this study shown that the ASIR method improves the image quality on phantoms by decreasing noise and improving resolution with respect to the classical one. Moreover, the benefit obtained is higher at lower doses. In clinical environment, a dose reduction can still be expected on 80 kVp low dose pediatric protocols using 50% of iterative reconstruction. Best ASIR percentage as a function of cardiac structures and detailed protocols will be presented for cardiac examinations.
Resumo:
The aim of this study was to prospectively evaluate the accuracy and predictability of new three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction.We analyzed the preoperative and postoperative clinical and radiologic data of 10 patients with isolated blow-out orbital fractures. Fracture locations were as follows: floor (N = 7; 70%), medial wall (N = 1; 1%), and floor/medial wall (N = 2; 2%). The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures. A three-dimensional preformed AO titanium mesh plate (0.4 mm in thickness) was selected according to the size of the defect previously measured on the preoperative computed tomographic (CT) scan examination and fixed at the inferior orbital rim with 1 or 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative CT scan. Coronal CT scan slices were used to measure bony orbital volume using OsiriX Medical Image software. Reconstructed versus uninjured orbital volume were statistically correlated.Nine patients (90%) had a successful treatment outcome without complications. One patient (10%) developed a mechanical limitation of upward gaze with a resulting handicapping diplopia requiring hardware removal. Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. Volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 2.5 cm(3). There was no significant difference in volume between the reconstructed and uninjured orbits.This preliminary study has demonstrated that three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction results in (1) a high rate of success with an acceptable rate of major clinical complications (10%) and (2) an anatomic restoration of the bony orbital contour and volume that closely approximates that of the contralateral uninjured orbit.
Resumo:
OBJECTIVE: To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). MATERIALS AND METHODS: Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. RESULTS: For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. CONCLUSION: LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %.
Resumo:
Post-lobectomy bronchovascular fistula (BVF) associated with massive hemoptysis is a rare but life-threatening complication. Surgical options include completion pneumonectomy or BVF resection with end-to-end anastomosis of the airways and reconstruction of the pulmonary artery (PA) by interposition of an appropriate substitute. We report PA resection and successful reconstruction by interposition of an autologous reversed superficial femoral vein (SFV) segment for this purpose.
Resumo:
BACKGROUND: Laparoscopic enucleation for neuroendocrine pancreatic tumors has become a feasible technique, with a reported incidence of pancreatic fistula ranging from 13 to 29 %.1 (-) 3 This report describes the first successful case of laparoscopic pancreatic enucleation with resection of the main pancreatic duct followed by end-to-end anastomosis. METHODS: A 41-year-old woman was admitted to the authors' hospital for repeated syncope. Hypoglycemia also was noted. A contrast-enhanced computed tomography examination showed a highly enhanced tumor measuring 22 mm in diameter on the ventral side of the pancreatic body adjacent to the main pancreatic duct. The patient's blood insulin level was elevated, and her diagnosis was determined to be pancreatic insulinoma. Laparoscopic pancreatic enucleation was performed. Approximately 2 cm of the main pancreatic duct was segmentally resected, and a short stent (Silicone tube: Silastic, Dow Corning Corporation, Midland, MI) was inserted. The direct anastomosis of the main pancreatic duct was performed using four separate sutures with an absorbable monofilament (6-0 PDS). RESULTS: The operation time was 166 min, and the estimated blood loss was 100 mL. The postoperative course was uneventful, and the patient was discharged from hospital on postoperative day 7. The pathologic findings showed a well-differentiated insulinoma and a negative surgical margin. A computed tomography examination performed 1 month after the operation showed a successful anastomosis with a patent main pancreatic duct. CONCLUSIONS: Laparoscopic segmental resection of the main pancreatic duct and end-to-end anastomosis can be performed safely with the insertion of a short stent. This technique also can be used for a central pancreatectomy.
Resumo:
La planification scanographique (3D) a démontré son utilité pour une reconstruction anatomique plus précise de la hanche (longueur du fémur, centre de rotation, offset, antéversion et rétroversion). Des études ont montré que lors de la planification 2D 50% seulement correspondaient à l'implant définitif du fémur alors que dans une autre étude ce taux s'élevait à 94% pour une planification 3D. Les erreurs étaient liées à l'agrandissement des radiographies. L'erreur sur la taille de la tige est liée à l'estimation inadéquate de la morphologie osseuse ainsi qu'à la densité osseuse. L'erreur de l'antéversion, augmentée par l'inclinaison du bassin, a pu être éliminée par la planification 3D et l'offset restauré dans 98%. Cette étude est basée sur une nouvelle technique de planification scanographique en trois dimensions pour une meilleure précision de la reconstruction de la hanche. Le but de cette étude est de comparer l'anatomie post-opératoire à celle préopératoire en comparant les tailles d'implant prévu lors de la planification 3D à celle réellement utilisée lors de l'opération afin de déterminer l'exactitude de la restauration anatomique avec étude des différents paramètres (centre de rotation, densité osseuse, L'offset fémoral, rotations des implants, longueur du membre) à l'aide du Logiciel HIP-PLAN (Symbios) avec évaluation de la reproductibilité de notre planification 3D dans une série prospective de 50 patients subissant une prothèse totale de hanche non cimentée primaire par voie antérieure. La planification pré-opératoire a été comparée à un CTscan postopératoire par fusion d'images. CONCLUSION ET PRESPECTIVE Les résultats obtenus sont les suivants : La taille de l'implant a été prédit correctement dans 100% des tiges, 94% des cupules et 88% des têtes (longueur). La différence entre le prévu et la longueur de la jambe postopératoire était de 0,3+2,3 mm. Les valeurs de décalage global, antéversion fémorale, inclinaison et antéversion de la cupule étaient 1,4 mm ± 3,1, 0,6 ± 3,3 0 -0,4 0 ± 5 et 6,9 ° ± 11,4, respectivement. Cette planification permet de prévoir la taille de l'implant précis. Position de la tige et de l'inclinaison de la cupule sont exactement reproductible. La planification scanographique préopératoire 3D permet une évaluation précise de l'anatomie individuelle des patients subissant une prothèse totale de hanche. La prédiction de la taille de l'implant est fiable et la précision du positionnement de la tige est excellente. Toutefois, aucun avantage n'est observée en termes d'orientation de la cupule par rapport aux études impliquant une planification 2D ou la navigation. De plus amples recherches comparant les différentes techniques de planification pré-opératoire à la navigation sont nécessaire.
Resumo:
BACKGROUND: The potential effects of ionizing radiation are of particular concern in children. The model-based iterative reconstruction VEO(TM) is a technique commercialized to improve image quality and reduce noise compared with the filtered back-projection (FBP) method. OBJECTIVE: To evaluate the potential of VEO(TM) on diagnostic image quality and dose reduction in pediatric chest CT examinations. MATERIALS AND METHODS: Twenty children (mean 11.4 years) with cystic fibrosis underwent either a standard CT or a moderately reduced-dose CT plus a minimum-dose CT performed at 100 kVp. Reduced-dose CT examinations consisted of two consecutive acquisitions: one moderately reduced-dose CT with increased noise index (NI = 70) and one minimum-dose CT at CTDIvol 0.14 mGy. Standard CTs were reconstructed using the FBP method while low-dose CTs were reconstructed using FBP and VEO. Two senior radiologists evaluated diagnostic image quality independently by scoring anatomical structures using a four-point scale (1 = excellent, 2 = clear, 3 = diminished, 4 = non-diagnostic). Standard deviation (SD) and signal-to-noise ratio (SNR) were also computed. RESULTS: At moderately reduced doses, VEO images had significantly lower SD (P < 0.001) and higher SNR (P < 0.05) in comparison to filtered back-projection images. Further improvements were obtained at minimum-dose CT. The best diagnostic image quality was obtained with VEO at minimum-dose CT for the small structures (subpleural vessels and lung fissures) (P < 0.001). The potential for dose reduction was dependent on the diagnostic task because of the modification of the image texture produced by this reconstruction. CONCLUSIONS: At minimum-dose CT, VEO enables important dose reduction depending on the clinical indication and makes visible certain small structures that were not perceptible with filtered back-projection.
Resumo:
PURPOSE OF REVIEW: The article reviews recent significant advances and current applications of the temporoparietal fascia flap (TPFF) in head and neck surgery. RECENT FINDINGS: The recent literature describes a wide span of new applications of the TPFF in many areas. Significant developments and refinements in the reconstruction of orbitomaxillary composite defects and orbital exenteration cavities are reported. The TPFF combined with alloplastic framework is gaining in importance in external ear reconstruction. Innovative prefabricated skin or soft-tissue grafts based on the TPFF are used to restore facial contour or in the reconstruction of complex facial defects. The free TPFF finds a role in laryngotracheal reconstruction as a vascular carrier to support cartilage grafts. SUMMARY: Owing to its reliability and unequalled structural properties, the TPFF still plays a central role in facial reconstruction. Future investigation will likely incorporate the free TPFF as a vascular carrier of bioengineered tissues, such as cartilage and mucosa, for various head and neck indications.