986 resultados para RECEPTOR POLYMORPHISM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic fatigue syndrome (CFS) is characterized by idiopathic fatigue of greater than 6 months' duration with postexertional exacerbation and many other symptoms. A trend toward relative hypocortisolism is described in CFS. Twin and family studies indicate a substantial genetic etiologic component to CFS. Recently, severe corticosteroid-binding globulin (CBG) gene mutations have been associated with CFS in isolated kindreds. Human leukocyte elastase, an enzyme important in CBG catabolism at inflammatory sites, is reported to be elevated in CFS. We hypothesized that CBG gene polymorphisms may act as a genetic risk factor for CFS. A total of 248 patients with CFS defined by Centers for Disease Control criteria, and 248 controls were recruited. Sequencing and restriction enzyme testing of the CBG gene coding region allowed detection of severe CBG gene mutations and a common exon 3 polymorphism (c.825G --> T, Ala-Ser(224)). Plasma CBG levels were measured in 125 CFS patients and 198 controls by radioimmunoassay. Total and free (calculated and measured) cortisol levels were ascertained in single samples between 8-10 a.m. The age of onset (mid 30s) and gender ratio (2.2:1, female:male) of the patients were similar to those reported in U.S. epidemiologic studies. A trend toward a preponderance of serine(224) homozygosity among the CFS patients was noted, compared with controls (chi(2) = 5.31, P = 0.07). Immunoreactive-CBG (IR-CBG) levels were higher in Serine/Alanine (Ser/Ala) than Ala/Ala subjects and higher again in Ser/Ser subjects, this effect was strongest in controls; Ser/Ser: 46.1 +/- 1.8 (n = 31, P = 0.03) vs. Ser/Ala: 42.4 +/- 1.0 (n = 56, P = 0.05) vs. Ala/Ala: 40.8 +/- 1.7 mug/mL (n = 21). Despite higher CBG levels, there was a nonsignificant trend toward lower total and free plasma cortisol in serine allele positive patients, total cortisol: Ser/Ser: 13.3 +/- 1.4 (n = 34) vs. Ser/Ala: 14.0 +/- 0.7 (n = 66) vs. Ala/Ala: 15.4 +/- 1.0 (n = 23). Homozygosity for the serine allele of the CBG gene may predispose to CFS, perhaps due to an effect on hypothalamic-pituitary-adrenal axis function related to altered CBG-cortisol transport function or immune-cortisol interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Post-traumatic stress disorder (PTSD) is reported in some studies to be associated with increased glucocorticoid (GC) sensitivity. Two common glucocorticoid receptor (GR) potymorphisms (N363S and 8cll) appear to contribute to the population variance in GC sensitivity. There is some evidence that there may be a genetic predisposition to PTSD. Hence we studied 118 Vietnam war veterans with PTSD for (i) GR polymorphisms, particularly the N363S and the Bcll polymorphisms which are thought to be GC sensitising, and (ii) two measures of GC sensitivity, the tow-dose 0.25 mg dexamethasone suppression test (LD-DST) and the dermal vasoconstrictor assay (DVVA). The DST and GR polymorphisms were also performed in 42 combat exposed Vietnam war veterans without PTSD. Basal plasma cortisol levels were not significantly different in PTSD (399.5 +/- 19.2 nmol/L, N=75) and controls (348.6 +/- 23.0 nmol/L, N = 33) and the LD-DST resulted in similar cortisol suppression in both groups (45.6 +/- 3.2 vs. 40.8 +/- 4.1%). The cortisol suppression in PTSD patients does not correlate with Clinician Administered PTSD Scores (CAPS), however there was a significant association between the Bcll GG genotype and low basal cortisol levels in PTSD (P=0.048). The response to the DVVA was similar to controls (945 +/- 122, N = 106 vs. 730 +/- 236, N = 28, P = 0.42). PTSD patients with the GG genotype, however, tended to be more responsive to DVVA and in this group the DVVA correlated with higher CAPS scores. The only exon 2 GR polymorphisms detected were the R23K and N363S. Heterozygosity for the N363S variant in PTSD, at 5.1% was not more prevalent than in other population studies of the N363S polymorphism in Caucasians (6.0-14.8%). The GG genotype of the Bcll polymorphism found to be associated with increased GC sensitivity in many studies showed a tendency towards increased response with DVVA and correlated with higher CAPS scores. In conclusion, the N363S and Bcll GR polymorphisms were not more frequent in PTSD patients than controls and reported population frequencies. Our PTSD group did not display GC hypersensitivity, as measured by the LD-DST and DVVA. In a subset of PTSD patients with the Bcll GG genotype, CAPS scores and basal cortisol Levels were negatively correlated. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context and Objective: Hip fracture is partially genetically determined. The present study was designed to examine the contributions of vitamin D receptor (VDR) and collagen I alpha 1 (COLIA1) genotypes to the liability to hip fracture in postmenopausal women. Design: The study was designed as a prospective population-based cohort investigation. Subjects: Six hundred seventy-seven postmenopausal women of Caucasian background, aged 70 +/- 7 yr (mean +/- SD), have been followed for up to 14 yr. Sixty-nine women had sustained a hip fracture during the period. Main Outcome: Atraumatic hip fractures were prospectively identified through radiologists' reports. Bone mineral density (BMD) at the hip and lumbar spine was measured by dual-energy x-ray absorptiometry. Genotypes: The TaqI and SpI COLIA1 polymorphisms of the VDR and COLIA1 genes were determined. Using the Single Nucleotide Polymorphism database, VDR TT, Tt, and tt genotypes were coded as TT, TC, and CC, whereas COLIA1 SS, Ss, and ss were coded as GG, GT, and TT. Results: Women with VDR CC genotype (16% prevalence) and COLIA1 TT genotype (5% prevalence) had an increased risk of hip fracture [odds ratio (OR) associated with CC, 2.6; 95% confidence interval (CI), 1.2-5.3; OR associated with TT, 3.8; 95% CI, 1.3-10.8] after adjustment for femoral neck BMD (OR, 3.4 per SD; 95% CI, 2.3-5.0) and age (OR, 1.4 per 5 yr; 95% CI, 1.1-1.7). Approximately 20 and 12% of the liability to hip fracture was attributable to the presence of the CC genotype and TT genotype, respectively. Conclusion: The VDR CC genotype and COLIA1 TT genotype were associated with increased hip fracture risk in Caucasian women, and this association was independent of BMD and age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The progesterone receptor (PR) is a candidate gene for the development of endometriosis, a complex disease with strong hormonal features, common in women of reproductive age. We typed the 306 base pair Alu insertion (AluIns) polymorphism in intron G of PR in 101 individuals, estimated linkage disequilibrium (LD) between five single-nucleotide polymorphisms (SNPs) across the PR locus in 980 Australian triads (endometriosis case and two parents) and used transmission disequilibrium testing (TDT) for association with endometriosis. The five SNPs showed strong pairwise LD, and the AluIns was highly correlated with proximal SNPs rs1042839 ({Delta}2 = 0.877, D9 = 1.00, P < 0.0001) and rs500760 ({Delta}2 = 0.438, D9 = 0.942, P < 0.0001). TDT showed weak evidence of allelic association between endometriosis and rs500760 (P = 0.027) but not in the expected direction. We identified a common susceptibility haplotype GGGCA across the five SNPs (P = 0.0167) in the whole sample, but likelihood ratio testing of haplotype transmission and non-transmission of the AluIns and flanking SNPs showed no significant pattern. Further, analysis of our results pooled with those from two previous studies suggested that neither the T2 allele of the AluIns nor the T1/T2 genotype was associated with endometriosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, a role for agouti signalling protein (ASIP) in human pigmentation has not been well characterized. It is known that agouti plays a pivotal role in the pigment switch from the dark eumelanin to the light pheomelanin in the mouse. However, because humans do not have an agouti banded hair pattern, its role in human pigmentation has been questioned. We previously identified a single polymorphism in the 3'-untranslated region (UTR) of ASIP that was found at a higher frequency in African-Americans compared with other population groups. To compare allele frequencies between European-Australians and indigenous Australians, the g.8818A -> G polymorphism was genotyped. Significant differences were seen in allele frequencies between these groups (P < 0.0001) with carriage of the G allele highest in Australian Aborigines. In the Caucasian sample set a strong association was observed between the G allele and dark hair colour (P = 0.004) (odds ratio 4.6; 95% CI 1.4-15.27). The functional consequences of this polymorphism are not known but it was postulated that it might result in message instability and premature degradation of the transcript. To test this hypothesis, ASIP mRNA levels were quantified in melanocytes carrying the variant and non-variant alleles. Using quantitative real-time polymerase chain reaction the mean ASIP mRNA ratio of the AA genotype to the AG genotype was 12 (P < 0.05). This study suggests that the 3'-UTR polymorphism results in decreased levels of ASIP and therefore less pheomelanin production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25 000 single-nucleotide polymorphisms (SNPs) located within approximately 14 000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interleukin-4 (IL-4) signalling cascade has been identified as a pathway potentially important in the development of asthma. Genetic variants within this signalling pathway might contribute to the risk of developing asthma in a given individual. A number of polymorphisms have been described within the IL-4 receptor alpha (IL-4Ralpha) gene. In addition polymorphism occurs in the promoter for the IL-4 gene itself. This commentary accompanies a paper by C Ober et al describing the contribution of IL-4Ralpha polymorphism to susceptibility to asthma and atopy in the Hutterite population and other outbred populations collected during the collaborative studies on the genetics of asthma (CSGA) programme

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Aryl Hydrocarbon Receptor (AhR) is required for the toxicity of TCDD, and so the AhR of CRL:WI and CRL:WI(Han) rats was characterised. Western blot showed AhR proteins of ~110 and ~97 kDa in individual rats from both strains. The AhR cDNA from a CRL:WI(Han) rat with the ~110kDa protein revealed a sequence that was identical to that of the CRL:WI and SD rat. However, cloning of the AhR from a rat with the ~97kDa protein revealed a point mutation, and five variants encoding two C-terminally truncated variants of the AhR protein, arising from a point mutation in the intron/exon junction and consequent differential splicing. These C-terminally truncated variants were expressed and shown to give rise to a protein of ~97kDa; the recombinant AhR bound TCDD with an affinity that was not statistically different from the full-length protein. A single-nucleotide polymorphism (SNP) assay was developed, and showed that both alleles were represented in a Hardy-Weinberg equilibrium in samples of CRL:WI and CRL:WI(Han) populations; both alleles are abundant. Rats from two studies of TCDD developmental toxicity were genotyped, and the association with toxicity investigated using statistical analysis. There was no plausible evidence that the AhR allele had a significant effect on the toxic endpoints examined. These data show that the two AhR alleles are common in two strains of Wistar rat, and that the AhR alleles had no effect on TCDD-induced developmental toxicity in two independent studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH) is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs) have been reported within FSH receptor (FSHR) gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive) and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non- obstructive or normal men (p=0.001). Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04). Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS), and therefore vitamin D receptor (VDR), parathyroid hormone (PTH), and insulin receptor (INSR) gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genotyped in 35 women with PCOS and 35 controls using Polymerase chain reaction – Restriction fragment length polymorphism method. Furthermore, serum levels of glucose and insulin were measured in all participants. Results: No significant differences were observed for the VDR FokI, VDR Tru9I, VDR TaqI,, PTH DraII, INSR NsiI, and INSR PmlI gene polymorphisms between the women with PCOS and controls. However, after adjustment for confounding factors, the VDR BsmI “Bb” genotype and the VDR ApaI "Aa" genotype were significantly under transmitted to the patients (p= 0.016; OR= 0.250; 95% CI= 0.081-0.769, and p= 0.017; OR= 0.260; 95% CI= 0.086-0.788, respectively). Furthermore, in the women with PCOS, insulin levels were lower in the participants with the INSR NsiI "NN" genotype compared with those with the "Nn + nn" genotypes (P= 0.045). Conclusion: The results showed an association between the VDR gene BsmI and ApaI polymorphisms and PCOS risk. These data also indicated that the INSR "NN" genotype was a marker of decreased insulin in women with PCOS. Our findings, however, do not lend support to the hypothesis that PTH gene DraII variant plays a role in susceptibility to PCOS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last few years have seen dramatic advances in genomics, including the discovery of a large number of non-coding and antisense transcripts. This has revolutionised our understanding of multifaceted transcript structures found within gene loci and their roles in the regulation of development, neurogenesis and other complex processes. The recent and continuing surge of knowledge has prompted researchers to reassess and further dissect gene loci. The ghrelin gene (GHRL) gives rise to preproghrelin, which in turn produces ghrelin, a 28 amino acid peptide hormone that acts via the ghrelin receptor (growth hormone secretagogue receptor/GHSR 1a). Ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, and cancer development. A truncated receptor splice variant, GHSR 1b, does not bind ghrelin, but dimerises with GHSR 1a, and may act as a dominant negative receptor. The gene products of ghrelin and its receptor are frequently overexpressed in human cancer While it is well known that the ghrelin axis (ghrelin and its receptor) plays a range of important functional roles, little is known about the molecular structure and regulation of the ghrelin gene (GHRL) and ghrelin receptor gene (GHSR). This thesis reports the re-annotation of the ghrelin gene, discovery of alternative 5’ exons and transcription start sites, as well as the description of a number of novel splice variants, including isoforms with a putative signal peptide. We also describe the discovery and characterisation of a ghrelin antisense gene (GHRLOS), and the discovery and expression of a ghrelin receptor (growth hormone secretagogue receptor/GHSR) antisense gene (GHSR-OS). We have identified numerous ghrelin-derived transcripts, including variants with extended 5' untranslated regions and putative secreted obestatin and C-ghrelin transcripts. These transcripts initiate from novel first exons, exon -1, exon 0 and a 5' extended 1, with multiple transcription start sites. We used comparative genomics to identify, and RT-PCR to experimentally verify, that the proximal exon 0 and 5' extended exon 1 are transcribed in the mouse ghrelin gene, which suggests the mouse and human proximal first exon architecture is conserved. We have identified numerous novel antisense transcripts in the ghrelin locus. A candidate non-coding endogenous natural antisense gene (GHRLOS) was cloned and demonstrates very low expression levels in the stomach and high levels in the thymus, testis and brain - all major tissues of non-coding RNA expression. Next, we examined if transcription occurs in the antisense orientation to the ghrelin receptor gene, GHSR. A novel gene (GHSR-OS) on the opposite strand of intron 1 of the GHSR gene was identified and characterised using strand-specific RT-PCR and rapid amplification of cDNA ends (RACE). GHSR-OS is differentially expressed and a candidate non-coding RNA gene. In summary, this study has characterised the ghrelin and ghrelin receptor loci and demonstrated natural antisense transcripts to ghrelin and its receptor. Our preliminary work shows that the ghrelin axis generates a broad and complex transcriptional repertoire. This study provides the basis for detailed functional studies of the the ghrelin and GHSR loci and future studies will be needed to further unravel the function, diagnostic and therapeutic potential of the ghrelin axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that adenosine 5'-triphosphate (ATP) is a cotransmitter in the heart. Additionally, ATP is released from ischemic and hypoxic myocytes. Therefore, cardiac-derived sources of ATP have the potential to modify cardiac function. ATP activates P2X(1-7) and P2Y(1-14) receptors; however, the presence of P2X and P2Y receptor subtypes in strategic cardiac locations such as the sinoatrial node has not been determined. An understanding of P2X and P2Y receptor localization would facilitate investigation of purine receptor function in the heart. Therefore, we used quantitative PCR and in situ hybridization to measure the expression of mRNA of all known purine receptors in rat left ventricle, right atrium and sinoatrial node (SAN), and human right atrium and SAN. Expression of mRNA for all the cloned P2 receptors was observed in the ventricles, atria, and SAN of the rat. However, their abundance varied in different regions of the heart. P2X(5) was the most abundant of the P2X receptors in all three regions of the rat heart. In rat left ventricle, P2Y(1), P2Y(2), and P2Y(14) mRNA levels were highest for P2Y receptors, while in right atrium and SAN, P2Y(2) and P2Y(14) levels were highest, respectively. We extended these studies to investigate P2X(4) receptor mRNA in heart from rats with coronary artery ligation-induced heart failure. P2X(4) receptor mRNA was upregulated by 93% in SAN (P < 0.05), while a trend towards an increase was also observed in the right atrium and left ventricle (not significant). Thus, P2X(4)-mediated effects might be modulated in heart failure. mRNA for P2X(4-7) and P2Y(1,2,4,6,12-14), but not P2X(2,3) and P2Y(11), was detected in human right atrium and SAN. In addition, mRNA for P2X(1) was detected in human SAN but not human right atrium. In human right atrium and SAN, P2X(4) and P2X(7) mRNA was the highest for P2X receptors. P2Y(1) and P2Y(2) mRNA were the most abundant for P2Y receptors in the right atrium, while P2Y(1), P2Y(2), and P2Y(14) were the most abundant P2Y receptor subtypes in human SAN. This study shows a widespread distribution of P2 receptor mRNA in rat heart tissues but a more restricted presence and distribution of P2 receptor mRNA in human atrium and SAN. This study provides further direction for the elucidation of P2 receptor modulation of heart rate and contractility.