978 resultados para REACTION CHANNELS
Resumo:
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (P-X/P-Cs) ranging from 1. 11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4, The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells.
Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons
Resumo:
The properties of single Ca2+-activated K+ (BK) channels in neonatal rat intracardiac neurons were investigated using the patch-clamp recording technique. In symmetrical 140 mM K+, the single-channel slope conductance was linear in the voltage range -60/+60 mV. and was 207+/-19 pS. Na+ ions were not measurably permeant through the open channel. Channel activity increased with the cytoplasmic free Ca2+ concentration ([Ca2+],) with a Hill plot giving a half-saturating [Ca2+] (K-0.5) of 1.35 muM and slope of congruent to3. The BK channel was inhibited reversibly by external tetraethylammonium (TEA) ions, charybdotoxin, and quinine and was resistant to block by 4-aminopyridine and apamin. Ionomycin (1-10 muM) increased BK channel activity in the cell-attached recording configuration. The resting activity was consistent with a [Ca2+](i)
Propagation of nonstationary curved and stretched premixed flames with multistep reaction mechanisms
Resumo:
The propagation speed of a thin premixed flame disturbed by an unsteady fluid flow of a larger scale is considered. The flame may also have a general shape but the reaction zone is assumed to be thin compared to the flame thickness. Unlike in preceding publications, the presented asymptotic analysis is performed for a general multistep reaction mechanism and, at the same time, the flame front is curved by the fluid flow. The resulting equations define the propagation speed of disturbed flames in terms of the properties of undisturbed planar flames and the flame stretch. Special attention is paid to the near-equidiffusion limit. In this case, the flame propagation speed is shown to depend on the effective Zeldovich number Z(f) , and the flame stretch. Unlike the conventional Zeldovich number, the effective Zeldovich number is not necessarily linked directly to the activation energies of the reactions. Several examples of determining the effective Zeldovich number for reduced combustion mechanisms are given while, for realistic reactions, the effective Zeldovich number is determined from experiments. Another feature of the present approach is represented by the relatively simple asymptotic technique based on the adaptive generalized curvilinear system of coordinates attached to the flame (i.e., intrinsic disturbed flame equations [IDFE]).
Resumo:
The conditions under which blink startle facilitation can be found in anticipation of a reaction time task were investigated to resolve inconsistent findings across previous studies. Four groups of participants (n = 64) were presented with two visual stimuli, one predicting a reaction time task (S+) and the second presented alone (S-). Participants were asked to make a speeded response to the offset of the S+ (S1 paradigm) or were asked to respond to a tactile stimulus presented at the offset of the S+ (S1-S2 paradigm). Half of the participants in each paradigm condition received performance feedback. Overall, blink latency shortening and magnitude facilitation were larger during S+ than during S-. More detailed analyses, however, found these differences to be reliable only in the Feedback conditions. Ratings of S+ pleasantness did not change across the experiment. Electrodermal responses to S+ were larger than to S- in all groups with differential electrodermal responding emerging earlier in the S1 paradigm. Taken together, the data support the notion that startle facilitation can occur during non-aversive Pavlovian conditioning. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An efficient Lanczos subspace method has been devised for calculating state-to-state reaction probabilities. The method recasts the time-independent wave packet Lippmann-Schwinger equation [Kouri , Chem. Phys. Lett. 203, 166 (1993)] inside a tridiagonal (Lanczos) representation in which action of the causal Green's operator is affected easily with a QR algorithm. The method is designed to yield all state-to-state reaction probabilities from a given reactant-channel wave packet using a single Lanczos subspace; the spectral properties of the tridiagonal Hamiltonian allow calculations to be undertaken at arbitrary energies within the spectral range of the initial wave packet. The method is applied to a H+O-2 system (J=0), and the results indicate the approach is accurate and stable. (C) 2002 American Institute of Physics.
Resumo:
A major limitation in any high-performance digital communication system is the linearity region of the transmitting amplifier. Nonlinearities typically lead to signal clipping. Efficient communication in such conditions requires maintaining a low peak-to-average power ratio (PAR) in the transmitted signal while achieving a high throughput of data. Excessive PAR leads either to frequent clipping or to inadequate resolution in the analog-to-digital or digital-to-analog converters. Currently proposed signaling schemes for future generation wireless communications suffer from a high PAR. This paper presents a new signaling scheme for channels with clipping which achieves a PAR as low as 3. For a given linear range in the transmitter's digital-to-analog converter, this scheme achieves a lower bit-error rate than existing multicarrier schemes, owing to increased separation between constellation points. We present the theoretical basis for this new scheme, approximations for the expected bit-error rate, and simulation results. (C) 2002 Elsevier Science (USA).
Resumo:
The study of viral-based processes is hampered by (a) their complex, transient nature, (b) the instability of products, and (c) the lack of accurate diagnostic assays. Here, we describe the use of real-time quantitative polymerase chain reaction to characterize baculoviral infection. Baculovirus DNA content doubles every 1.7 h from 6 h post-infection until replication is halted at the onset of budding. No dynamic equilibrium exists between replication and release, and the kinetics are independent of the cell density at the time of infection. No more than 16% of the intracellular virus copies bud from the cell. (C) 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 476-480, 2002; DOI 10.1002/bit.10126.
Resumo:
Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.
Resumo:
An investigation of the role of oxygen in the nitrous oxide/carbon reaction was carried out on various carbon samples (both graphitic and nongraphitic) over a range of temperatures and partial pressures. Previous work reported that oxygen strongly inhibited the nitrous oxide/carbon reaction. Large ratios of O-2/N2O were used in all previous work. In this work, the O-2/N2O ratio was kept below 1, and we found that oxygen did not inhibit the rate of the C + N2O reaction. Instead, the rate of the reaction in the presence of oxygen was essentially that predicted by the two independent reactions, nitrous oxide/carbon and oxygen/carbon, occurring simultaneously. A simple theoretical explanation is given for the observations, both past and present, on the basis of competitive chemisorption of nitrous oxide and oxygen on active sites.
Resumo:
Members of the Culex sitiens subgroup are important vectors of arboviruses, including Japanese encephalitis virus, Murray Valley encephalitis virus and Ross River virus. Of the eight described species, Cx. annulirostris Skuse, Cx. sitiens Wiedemann, and Cx. palpalis Taylor appear to be the most abundant and widespread throughout northern Australia and Papua New Guinea (PNG). Recent investigations using allozymes have shown this subgroup to contain cryptic species that possess overlapping adult morphology. We report the development of a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) procedure that reliably separates these three species. This procedure utilizes the sequence variation in the ribosomal DNA ITS1 and demonstrates species-specific PCR-RFLP profiles from both colony and field collected material. Assessment of the consistency of this procedure was undertaken on mosquitoes sampled from a wide geographic area including Australia, PNG, and the Solomon Islands. Overlapping adult morphology was observed for Cx. annulirostris and Cx. palpalis in both northern Queensland and PNG and for all three species at one site in northwest Queensland.
Resumo:
Although the polyunsaturated fatty acids arachidonic acid (AA) and docosahexaenoic acid (DHA) are enriched in the olfactory mucosa, their possible contribution to olfactory transduction has not been investigated. This study characterized their effects on voltage-gated K+ and Na+ channels of rat olfactory receptor neurons. Physiological (3-10 mum) concentrations of AA and DHA potently and irreversibly inhibited the voltage-gated K+ current in a voltage-independent manner. In addition, both compounds significantly reduced the inhibitory potency of the odorants acetophenone and amyl acetate at these channels. By comparison, the steady-state effects of both AA and DHA on the voltage-gated Na+ channel were relatively weak, with half-maximal inhibition requiring approximate to 35 mum of either compound. However, a surprising finding was that the initial application of 3 mum AA to a naive neuron caused a strong but transient inhibition of the Na+ current. The channels became almost completely resistant to this inhibition within 1 min, and a 2-min wash in control solution was insufficient to restore the strong inhibitory effect. These observations suggest that polyunsaturated fatty acids have the potential to strongly influence the coding of odorant information by olfactory receptor neurons.
Resumo:
ATP-dependent K+ channels (K-ATP) account for most of the recycling of K+ which enters the proximal tubules cell via Na, K-ATPase. In the mitochondrial membrane, opening of these channels preserves mitochondrial viability and matrix volume during ischemia. We examined KATP channel modulation in renal ischemia-reperfusion injury (IRI), using an isolated perfused rat kidney (IPRK) model, in control, IRI, IRI + 200 muM diazoxide (a K-ATP opener), IRI + 10 muM glibenclamide (a K-ATP blocker) and IRI + 200 muM diazoxide + 10 muM glibenclamide groups. IRI was induced by 2 periods of warm ischemia, followed by 45 min of reperfusion. IRI significantly decreased glomerular filtration rate (GFR) and increased fractional excretion of sodium (FENa) (p < 0.01). Neither diazoxide nor glibenclamide had an effect on control kidney function other than an increase in renal vascular resistance produced by glibenclamide. Pretreatment with 200 muM diazoxide reduced the postischemic increase in FENa (p < 0.05). Adding 10 muM glibenclamide inhibited the diazoxide effect on postischemic FENa (p < 0.01). Histology showed that kidneys pretreated with glibenclamide demonstrated an increase in injure in the thick ascending limb of outer medulla (p < 0.05). Glibenclamide significantly decreased post ischemic renal vascular resistance (p < 0.05). but had no significant effect on other renal function parameters. Our results suggest that sodium reabsorption is improved by K-ATP activation and blockade of K-ATP channels during IRI has an injury enhancing effect on renal epithelial function and histology. This may be mediated through K-ATP modulation in cell and or mitochondrial inner membrane.
Resumo:
Background: In the presence of dNTPs, intact HIV-1 virions are capable of reverse transcribing at least part of their genome, a process known as natural endogenous reverse transcription (NERT). PCR analysis of virion DNA produced by NERT revealed that the first strand transfer reaction (1stST) was inefficient in intact virions, with minus strand (-) strong stop DNA (ssDNA) copy numbers up to 200 times higher than post-1stST products measured using primers in U3 and U5. This was in marked contrast to the efficiency of 1stST observed in single-round cell infection assays, in which (-) ssDNA and U3-U5 copy numbers were indistinguishable. Objectives: To investigate the reasons for the discrepancy in first strand transfer efficiency between intact cell-free virus and the infection process. Study design: Alterations of both NERT reactions and the conditions of cell infection were used to test whether uncoating and/or entry play a role in the discrepancy in first strand transfer efficiency. Results and Conclusions: The difference in 1stST efficiency could not be attributed simply to viral uncoating, since addition of very low concentrations of detergent to NERT reactions removed the viral envelope without disrupting the reverse transcription complex, and these conditions resulted in no improvement in 1stST efficiency. Virus pseudotyped with surface glycoproteins from either vesicular stomatitis virus or amphotrophic murine leukaemia virus also showed low levels of 1stST in low detergent NERT assays and equivalent levels of (-) ssDNA and 1stST in single-round infections of cells, demonstrating that the gp120-mediated infection process did not select for virions capable of carrying out 1stST. These data indicate that a post-entry event or factor may be involved in efficient HIV-1 reverse transcription in vivo. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objective To develop and validate specific, sensitive and rapid diagnostic tests using RT-PCR for the detection of Ross River virus (RRV), Kunjin virus (KV) and Murray Valley encephalitis virus (MVEV) infections in horses. Methods Primer sets based on nucleotide sequence encoding the envelope glycoprotein E2 of RRV and on the nonstructural protein 5 (NS5) of KV and MVEV were designed and used in single round PCRs to test for the respective viruses in infected cell cultures and, in the case of RRV, in samples of horse blood and synovial fluid. Results The primer pairs designed for each of the three viruses amplified a product of expected size from prototype viruses that were grown in cell culture. The identity of each of the products was confirmed by nucleotide sequencing indicating that in the context used the RT-PCRs were specific. RRV was detected in serums from 8 horses for which there were clinical signs consistent with RRV infection such that an acute-phase serum sample was taken and submitted for RRV serology testing. The RRV RT-PCR was analytically sensitive in that it was estimated to detect as little as 50 TCID50 of RRV per mL of serum and was specific in that the primer pairs did not amplify other products from the 8 serum samples. The RRV primers also detected virus in three independent mosquito pools known to contain RRV by virus isolation in cell culture. Samples from horses suspected to be infected with KV and MVEV were not available. Conclusion Despite much anecdotal and serological evidence for infection of horses with RRV actual infection and associated clinical disease are infrequently confirmed. The availability of a specific and analytically sensitive RT-PCR for the detection of RRV provides additional opportunities to confirm the presence of this virus in clinical samples. The RTPCR primers for the diagnosis of KV and MVEV infections were shown to be specific for cell culture grown viruses but the further validation of these tests requires the availability of appropriate clinical samples from infected horses.