980 resultados para RCE-PD (resonant-cavity-enhanced photodiode)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ti45Zr35Ni20-xPdx (x = 0, 1, 3, 5 and 7, at%) alloys were prepared by melt-spinning. The phase structure and electrochemical hydrogen storage performances of melt-spun alloys were investigated. The melt-spun alloys were icosahedral quasicrystalline phase, and the quasi-lattice constant increased with increasing x value. The maximum discharge capacity of alloy electrodes increased from 79 mAh/g (x = 0) to 148 mAh/g (x = 7). High-rate dis-chargeability and cycling stability were also enhanced with the increase of Pd content. The improvement in the electrochemical hydrogen storage characteristics may be ascribed to better electrochemical activity and oxidation resistance of Pd than that of Ni.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrated an effective enviromentally friendly synthesis route to prepare noble metallic (Au, Ag, Pt and Pd) nanoparticles (NPs) networks mediated by type I collagen in the absence of any seeds or surfactants. In the reactions, type I collagen served as stabilizing agent and assembly template for the synthesized metallic NPs. The hydrophobic interaction between collagen and mica interface as well as the hydrogen bonds between inter- and intra-collagen molecules play important roles in the formation of collagen-metallic NPs networks. The noble metallic NPs networks have many advantages in the applications of Surface-Enhanced Raman Scattering (SERS) and electrochemistry detection. Typically, the as-prepared Ag NPs networks reveal great Raman enhancement activity for 4-ATP, and can even be used to detect low concentration of DNA base, adenine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale arrays consist of dendritic single-crystalline Ag/Pd alloy nanostructures are synthesized for the first time. A simple galvanic replacement reaction is introduced to grow these arrays directly on Ag substrates. The morphology of the products strongly depended on the reaction temperature and the concentration of H2PdCl4 solution. The mechanism of the formation of alloy and the dendritic morphology has been discussed. These alloy arrays exhibit high surface-enhanced Raman scattering (SERS) activity and may have potential applications in investigation of "in situ" Pd catalytic reactions using SERS. Moreover, electrocatalytic measurements suggest that the obtained dendritic Ag/Pd alloy nanostructures exhibit electrocatytic activity toward the oxidation of formic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The controllable synthesis of nanosized carbon-supported Pd catalysts through a surface replacement reaction (SRR) method is reported in this paper. Depending on the synthesis conditions the Pd can be formed on Co nanoparticles surface in hollow nanospheres or nanoparticles structures. Citrate anion acts as a stabilizer for the nanostructures, and protonation of the third carboxyl anion and hence the nanostructure and size of the resulting catalysts are controlled via the pH of the synthesis solution. Pd hollow nanospheres, containing smaller Pd nanoparticles, supported on carbon are formed under the condition of pH 9 reaction solution. Meanwhile, highly dispersed carbon-supported Pd nanoparticles can be formed with higher pH (pH >= 10). All catalysts prepared through the SRR method show enhanced activities for the HCOOH electro-oxidation reaction compared to catalysts reduced by NaBH4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic white-light-emitting devices ( OLEDs) based on a multimode resonant microcavity defined by a pair of dielectric mirrors and metal mirrors were presented. By selective effects of the quarter-wave dielectric stack mirror on mode, white light emission containing three individual narrow peaks of red, green and blue was achieved, and showed weak dependence on the viewing angle. The Commission Internationale De L'Eclairage ( CIE) chromaticity coordinates changed from ( 0.29, 0.37) at 0 degrees to ( 0.31, 0.33) at 40 degrees. Furthermore, the brightness and electroluminescence efficiency of the microcavity OLEDs were enhanced compared with noncavity OLEDs. The maximum brightness reached 1940 cd m(-2) at a current density of 200 mA cm(-2), and the maximum current efficiency and power efficiency are 1.6 cd A(-1) at a current density of 12 mA cm(-2) and 0.41 1m W-1 at a current density of 1.6 mA cm(-2), which are over 1.6 times higher than that of a noncavity OLED.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using Nd: YAG laser (532 nm) pumped mixed-dye laser. we obtained the output of this dye enhanced at the wavelength interval equivalent to that given by the copper vapor laser pumped dye laser. This measure favored is with the measurement of single-color three-photon resonant ionization spectrum of atomic uranium in the range of 562-586 nm,which is otherwise not efficiently covered by Nd: YAG laser pumped dye laser with any single dye. Thus 140 U I energy levels were obtained and the peaks of interest 575.814 nm and 575.836 rim were well resolved and their relative intensity determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

充分利用非线性跟踪微分器获得高质量微分信号的特性,将跟踪微分器与传统的简单模糊PD控制器相结合,提出一种简单的高性能的改进的模糊PD控制器.该改进模糊控制器的最显著特点是对测量噪声的强鲁棒性和工程易实现性.数值仿真证明了其有效性和高效性.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present two strategies to enhance the dynamical entanglement transfer from continuous-variable (CV) to finite-dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a composite finite-dimensional system of many qubits simultaneously interacting with a bipartite CV field. We show that, considering realistic conditions in the generation of CV entanglement, a small number of qubits resonantly coupled to the CV system are sufficient for an almost complete dynamical transfer of the entanglement. Our analysis also sheds further light on the transition between the microscopic and macroscopic behaviors of composite finite-dimensional systems coupled to bosonic fields (like atomic clouds interacting with light). Furthermore, we present a protocol based on sequential interactions of the CV system with some ancillary qubit systems and on subsequent measurements, allowing us to probabilistically convert CV entanglement into "almost-perfect" Bell pairs of two qubits. Our proposals are suited for realizations in various experimental settings, ranging from cavity-QED to cavity-integrated superconducting devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity. © 2008 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment, and annihilation. Measurements of annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFRs) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecule (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. Molecules that do not bind positrons and hence do not exhibit such resonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom, approximately as the fourth power of the number of atoms in the molecule. While the details are as yet unclear, intramolecular vibrational energy redistributio (IVR) to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided binding energies for 30 species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecul (negative-ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoretical and experimental investigation are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method is proposed for detecting positron-atom bound states by observing enhanced positron annihilation due to electronic Feshbach resonances at electron-volt energies. The method is applicable to a range of open-shell transition-metal atoms which are likely to bind the positron: Fe, Co, Ni, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt. Estimates of their binding energies are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate optomechanical forces on a nearly lossless scatterer, such as an atom pumped far off-resonance or amicromirror, inside an optical ring cavity. Our model introduces two additional features to the cavity: an isolator is used to prevent circulation and resonant enhancement of the pump laser field and thus to avoid saturation of or damage to the scatterer, and an optical amplifier is used to enhance the effective Q-factor of the counterpropagating mode and thus to increase the velocity-dependent forces by amplifying the back-scattered light. We calculate friction forces, momentum diffusion, and steady-state temperatures to demonstrate the advantages of the proposed setup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here a detailed study of the complex relationship between the electromagnetic near-field and far-field responses of "real" nanostructured metallic surfaces. The near-field and far-field responses are specified in terms of (spectra of) the surface-enhanced Raman-scattering enhancement factor (SERS EF) and optical extinction, respectively. First, it is shown that gold nanorod- and nanotube-array substrates exhibit three distinct localized surface plasmon resonances (LSPRs): a longitudinal, a transverse, and a cavity mode. The cavity mode simultaneously has the largest impact on the near-field behavior (as observed through the SERS EF) and the weakest optical interaction: It has a "near-field-type" character. The transverse and longitudinal modes have a significant impact on the far-field behavior but very little impact on SERS: They have a "far-field-type" character. We confirm the presence of the cavity mode using a combination of SERS EF spectra, electron microscopy, and electromagnetic modeling and thus clearly illustrate and explain the (lack of) correlation between the SERS EF spectra and the optical response in terms of the contrasting character of the three LSPRs. In doing so, we experimentally demonstrate that, for a surface that supports multiple LSPRs, the near-field and far-field properties can in fact be tuned almost independently. It is further demonstrated that small changes in geometrical parameters that tune the spectral location of the LPSRs can also drastically influence the character of these modes, resulting in certain unusual behavior, such as the far-field resonance redshift as the near-field resonance blueshifts. DOI: 10.1103/PhysRevX.3.011001

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feasibility of apertureless scanning near-field Raman microscopy, exploiting the local enhancement in Raman scattering in the vicinity of a silver or gold tip, was investigated. Using the finite difference time domain method we calculated the enhancement of electric field strength, and hence Raman scattering, achieved through the resonant excitation of local modes in the tip. By modelling the frequency-dependent dielectric response of the metal tip we were able to highlight the resonant nature of the tip-enhancement and determine the excitation wavelength required for the strongest electric field enhancement, and hence Raman scattering intensity, which occurs for the excitation of modes localized at the tip apex. It is demonstrated that a peak Raman enhancement of 10(7)-fold should be achievable with <5 nm spatial resolution. We show that surface-enhanced Raman scattering from carbon contamination on a silver or gold tip can be significant. However, we find for a tip of radius of curvature 20 nm that the Raman enhancement should decay totally within 20 nm from the tip. Hence withdrawal of the tip by this distance should lead to the disappearance of the tip-enhanced signal, leaving only that from carbon contamination on the tip itself and the intrinsic signal from the sample. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate a hitherto largely unexplored regime of cavity quantum electrodynamics in which a highly-reflective element positioned between the end-mirrors of a typical Fabry--P\'erot resonator strongly modifies the cavity response function, such that two longitudinal modes with different spatial parity are brought close to frequency degeneracy. We examine applications of this generic `optical coalescence' phenomenon for the generation of enhanced photon--phonon nonlinearities in optomechanics and atom--photon nonlinearities in cavity quantum electrodynamics with strongly-coupled emitters.