993 resultados para RB-SR


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The elemental composition, patterns of distribution and possible sources of street dust are not common to all urban environments, but vary according to the peculiarities of each city. The common features and dissimilarities in the origin and nature of street dust were investigated through a series of studies in two widely different cities, Madrid (Spain) and Oslo (Norway), between 1990 and 1994. The most comprehensive sampling campaign was carried out in the Norwegian capital during the summer of 1994. An area of 14 km2, covering most of downtown Oslo and some residential districts to the north of the city, was divided into 1 km2 mapping units, and 16 sampling increments of approximately 150 g were collected from streets and roads in each of them. The fraction below 100 μm was acid-digested and analysed by ICP-MS. Statistical analyses of the results suggest that chemical elements in street dust can be classified into three groups: “urban” elements (Ba, Cd, Co, Cu, Mg, Pb, Sb, Ti, Zn), “natural” elements (Al, Ga, La, Mn, Na, Sr, Th, Y) and elements of a mixed origin or which have undergone geochemical changes from their original sources (Ca, Cs, Fe, Mo, Ni, Rb, Sr, U). Soil resuspension and/or mobilisation appears to be the most important source of “natural” elements, while “urban” elements originate primarily from traffic and from the weathering and corrosion of building materials. The data for Pb seem to prove that the gradual shift from leaded to unleaded petrol as fuel for automobiles has resulted in an almost proportional reduction in the concentration of Pb in dust particles under 100 μm. This fact and the spatial distribution of Pb in the city strongly suggest that lead sources other than traffic (i.e. lead accumulated in urban soil over the years) may contribute as much lead, if not more, to urban street dust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The geochemistry of basalts recovered from seven sites in the North Atlantic is described with particular reference to minor elements. Three sites (407, 408, and 409) along the same mantle flow line, transverse to the Reykjanes Ridge at about 63°N, provide information on the composition of basalts erupted over a 34-m.y. interval between 2.3 and 36 m.y. ago. At Site 410, at 45°N, penetration into 10 m.y.-old crust west of the ridge axis permits comparisons with young basalts dredged from the median valley at 45°N. Three sites in the FAMOUS area at about 36°N provided material from very young (1 m.y.) basaltic crust (Site 411), and material to test the geochemical coherence of basalts of different ages (1.5 and 3.5 m.y.) on either side of a fracture zone (Sites 412 and 413). These sites complement earlier data from dredged and drilled sites (Leg 37) in the FAMOUS area. At Site 407, four geochemically distinct basalt units occur, with different normative and rare-earth element (REE) characteristics, and there is a clear correlation with magnetic stratigraphy. Yet there is a remarkable consistency in incompatible element ratios between these units, indicating derivation from an essentially similar mantle source. The basalts from the younger sites, 408 and 409, show a similar range of normative and REE variation, but incompatible element ratios are identical to those at Site 407, indicating that basalts at all three sites were produced from a mantle source which was geochemically relatively uniform. Rare-earth differences between the basalts can be interpreted in terms of variations in the degree and depth of partial melting causing HREE (+Y) retention in the source, although there may be some inter-site differences with respect to REE. A similar picture is presented at 45°N. Apparently a range of tholeiitic, transitional, and alkalic basalts were being erupted 10 m.y. ago, which have almost identical geochemical characteristics to those recently erupted in the median valley at 45°N. Incompatible element ratios are markedly different from those recorded at the Reykjanes Ridge. Basalts recovered from the FAMOUS sites are geochemically similar to previous samples recovered from the FAMOUS area, and their incompatible element ratios are similar, but not identical, to those at 45°N. However, total trace element levels are consistently lower than in 45°N basalts, which might imply smaller degrees of partial melting and/or greater depths of magma generation at 45°N, or higher trace element levels in the mantle source at 45°N. Few of the basalts recovered on Leg 49 have the geochemical characteristics of typical "MORB" (e.g., Nazca Plate, Leg 34). The data strongly support models invoking geochemical inhomogeneity in the source regions of basalts produced at the Mid-Atlantic Ridge. However, the data also introduce an additional time factor into such models and demonstrate the uniformity of the mantle source at a particular ridge sector (over periods in excess of 30 m.y.), while emphasizing the marked differences along the ridge. Mixing models invoking "depleted" and "enriched" mantle sources would seem to be inadequate to account for the observed variations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At Site 462 in the Nauru Basin, western Pacific Ocean, 56 lithologic units have been recovered from an extensive flood basalt province. Fossil evidence suggests that the lavas were emplaced during the interval 100-115 Ma, some 30 m.y. after formation of the underlying Jurassic ocean crust. The lithologic units can be broadly divided into three chemical units, the lowermost two of which are chemically monotonous, suggesting rapid eruption of basalt from a compositionally homogeneous magma chamber. All the basalts are hypersthene- (hy-) rich tholeiites, with approximately chondritic La/Sm, La/Yb, Zr/Nb, La/Ta, and Th/Hf ratios. Chemically they resemble, in part, "transitional" mid-ocean ridge basalts (MORB) from areas such as the Reykjanes Ridge, although Rb, Ba, and K contents are very low and similar to those of "normal" MORB. Their 87Sr/86Sr ratios are higher than in N-type MORB (Fujii et al., 1981). The chemistry of the Nauru basalts differs from that of continental flood basalts, which tend to be strongly enriched in large-ion lithophile (LIL) elements, although the extent to which the differences result from sialic contamination or source variability is not clear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fine-grained clay subfractions (SFs) with particle size of <0.1, 0.1-0.2, 0.2-0.3, 0.3-0.6, 0.6-2.0, and 2-5 µm separated from claystone of Upper Precambrian Pumanskaya and Poropelonskaya formations on the Srednii Peninsula were studied by transmission electron microscopy, X-ray diffraction, and Rb-Sr methods. All subfractions consist of low-temperature illite and chlorite, and contribution of chlorite decreases with diminishing particle size. The crystallinity index and I002/I001 ratio increase from coarse- to fine-grained SFs. Leaching by ammonium acetate solution and Rb-Sr systematics in combination with mineralogical and morphological data indicate that illite in Upper Proterozoic claystone from the Srednii Peninsula formed during three time intervals: 810-830, 610-620, and about 570 Ma ago. The first generation of this mineral with low Rb/Sr ratio dominates in coarse-grained SFs while the second and third generations with a high Rb/Sr ratio prevail in fine-grained SFs. All of three generations are known in Poropelon claystone, whereas Puman claystone contains only illite of the first and second generations. Geological processes responsible for multistage illite evolution in claystones are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concentrations of minor and trace elements (Li, Rb, Sr, Ba, Fe, and Mn) in interstitial water (IW) were found in samples collected during Ocean Drilling Program (ODP) Leg 166 from Sites 1005, 1006, and 1007 on the western flank of the Great Bahama Bank (GBB). Concentrations of Li range from near-seawater values immediately below the sediment/water interface to a maximum of 250 µM deep in Site 1007. Concentrations determined during shore-based studies are substantially lower than the shipboard data presented in the Leg 166 Initial Reports volume (range of 28-439 µM) because of broad-band interferences from high dissolved Sr concentrations in the shipboard analyses. Rubidium concentrations of 1.3-1.7 µM were measured in IW from Site 1006 when salinity was less than 40 psu. A maximum of 2.5 µM is reached downhole at a salinity of 50 psu. Shipboard and shore-based concentrations of Sr2+ are in excellent agreement and vary from 0.15 mM near the sediment water interface to 6.8 mM at depth. The latter represent the highest dissolved Sr2+ concentrations observed to date in sediments cored during the Deep Sea Drilling Project (DSDP) or ODP. Concentrations of Ba2+ span three orders of magnitude (0.1-227µM). Concentrations of Fe (<0.1-14 µM) and Mn (0.1-2 µM) exhibit substantially greater fluctuations than other constituents. The concentrations of minor and trace metals in pore fluids from the GBB transect sites are mediated principally by changes in pore-water properties resulting from early diagenesis of carbonates associated with microbial degradation of organic matter, and by the abundance of detrital materials that serve as a source of these elements. Downcore variations in the abundance of detrital matter reflect differences in carbonate production during various sea-level stands and are more evident at the more proximal Site 1005 than at the more pelagic Site 1006. The more continuous delivery of detrital matter deep in Site 1007 and throughout all of Site 1006 is reflected in a greater propensity to provide trace elements to solution. Concentrations of dissolved Li+ derive principally from (1) release during dissolution of biogenic carbonates and subsequent exclusion during recrystallization and (2) release from partial dissolution of Li-bearing detrital phases, especially ion-exchange reactions with clay minerals. A third but potentially less important source of Li+ is a high-salinity brine hypothesized to exist in Jurassic age (unsampled) sediments underlying those sampled during Leg 166. The source of dissolved Sr2+ is almost exclusively biogenic carbonate, particularly aragonite. Concentrations of dissolved Sr2+ and Ba2+ are mediated by the solubility of their sulfates. Barite and detrital minerals appear to be the more important source of dissolved Ba2+. Concentrations of Fe and Mn2+ in anoxic pore fluids are mediated by the relative insolubility of pyrite and incorporation into diagenetic carbonates. The principal sources of these elements are easily reduced Fe-Mn-rich phases including Fe-rich clays found in lateritic soils and aoelian dust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extended the petrographic and geochemical dataset for the recently discovered Transantarctic Mountain microtektites in order to check our previous claim that they are related to the Australasian strewn field. Based on color and composition, the 465 microtektites so far identified include two groups of transparent glass spheres less than ca. 800 µm in diameter: the most abundant pale-yellow, or normal, microtektites, and the rare pale-green, or high-Mg, microtektites. The major element composition of normal microtektites determined through electron microprobe analysis is characterized by high contents of silica (SiO2 = 71.5 ± 3.6 (1 sigma) wt%) and alumina (Al2O3 = 15.5 ± 2.2 (1 sigma) wt%), low total alkali element contents (0.50-1.85 wt%), and MgO abundances <6 wt%. The high-Mg microtektites have a distinctly higher MgO content >10 wt%. Transantarctic Mountain microtektites contain rare silica-rich (up to 93 wt% SiO2) glassy inclusions similar to those found in two Australasian microtektites analyzed here for comparison. These inclusions are interpreted as partially digested, lechatelierite-like inclusions typically found in tektites and microtektites. The major and trace element (by laser ablation - inductively coupled plasma - mass spectrometry) abundance pattern of the Transantarctic Mountain microtektites matches the average upper continental crust composition for most elements. Major deviations include a strong to moderate depletion in volatile elements including Pb, Zn, Na, K, Rb, Sr and Cs, as a likely result of severe volatile loss during the high temperature melting and vaporization of crustal target rocks. The normal and high-Mg Transantarctic Mountain microtektites have compositions similar to the most volatile-poor normal and high-Mg Australasian microtektites reported in the literature. Their very low H2O and B contents (by secondary ion mass spectrometry) of 85 ± 58 (1 sigma) ?g/g and 0.53 ± 0.21 ?g/g, respectively, evidence the extreme volatile loss characteristically observed in tektites. The Sr and Nd isotopic compositions of multigrain samples of Transantarctic Mountain microtektites are 87Sr/86Sr ~ 0.71629 and 143Nd/144Nd ~ 0.51209, and fall into the Australasian tektite compositional field. The Nd model age calculated with respect to the chondritic uniform reservoir (CHUR) is TNdCHUR ~ 1.1 Ga, indicating a Meso-Proterozoic crustal source rock, as was derived for Australasian tektites as well. Coupled with the Quaternary age from the literature, the extended dataset presented in this work strengthens our previous conclusion that Transantarctic Mountain microtektites represent a major southward extension of the Australasian tektite/microtektite strewn field. Furthermore, the significant depletion in volatile elements (i.e., Pb, B, Na, K, Zn, Rb, Sr and Cs) of both normal and high-Mg Transantarctic Mountain microtektites relative to the Australasian ones provide us with further confirmation of a possible relationship between high temperature-time regimes in the microtektite-forming process and ejection distance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

REE analyses were performed on authigenic illitic clay. minerals from Late Permian mudrocks, sandstones and bentonites from the Bowen Basin (Australia). The mixed-layer illite-smectite exhibit REE patterns with an obvious fractionation of the HREE from the LREE and MREE, which is an apparent function of degree of illitization reaction. The highly illitic (R greater than or equal to 3) illite-smectite from the northern Bowen Basin show a depletion of LREE relative to the less illitic (R=0 and 1) clays. In contrast, an enrichment of HREE for the illite-rich clays relative to less. illitic clays is evident for the southern Bowen Basin samples. The North American Shale Composite-normalized (La/Lu)(sn) ratios show negative correlations with the illite content in illite-smectite and positive correlations with the delta(18)O values of the clays for both the northern and southern Bowen Basin samples. These correlations indicate that the increasing depletion of LREE in hydrothermal fluids is a function of increasing water/rock ratios in the northern Bowen Basin. Good negative correlations between (La/Lu)(sn) ratios and illite content in illite-smectite from the southern Bowen Basin suggest the involvement of fluids with higher alkalinity and higher pH in low water/ rock ratio conditions. Increasing HREE enrichment with delta(18)O decrease indicates the effect of increasing temperature at low water/rock ratios in the southern Bowen Basin. Results of the present study confirm the conclusions of some earlier studies suggesting that REE in illitic clay minerals are mobile and fractionated during illitization and that this fact should be considered in studies of sedimentary processes and in identifying provenance. Moreover, our results show that REE systematic of illitic clay minerals can be applied as an useful technique to gain information about physico-chemical conditions during thermal and fluid flow events in certain sedimentary basins. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report comprehensive trace element and Sr-isotope data for microbial carbonates from the Archaean Mushandike limestone, Masvingo Greenstone Belt, Zimbabwe. The stromatolites have very coherent REE + Y patterns and share the essential shale-normalised characteristics of other Archaean marine precipitates (positive La and Gd anomalies, absence of a negative Cc anomaly and a strongly superchondritic Y/Ho ratio). Mixing models constrain the maximum amount of shale contamination to 0.25-1% and calculated detritus-free carbonate REE + Y systematics require precipitation from seawater. In terms of light-REE over heavy-REE depletion, however, the studied samples are very different from all other known Archaean marine precipitates. In shale-normalised plots, the Mushandike samples yield a negative slope. A very restricted, regional input source of the dissolved load is indicated because normalisation with locally occurring tonalite gneiss REE + Y data yields a pattern closely resembling typical shale-normalised Archaean marine chemical sediments. The disappearance of a negative Eu anomaly when patterns are normalised with local tonalite gneiss strengthens this interpretation. Sr-isotope ratios are strongly correlated with trace element contents and ratios, which explains the modest scatter in Sr-isotope ratios as representing (minor) clastic contamination. Importantly, even the least contaminated samples have very radiogenic initial Sr-87/Sr-86 ratios (0.7184) implying Sr input from an ancient high Rb/Sr source, such as the early Archaean gneisses of south-central Zimbabwe. A local ancient (3.5-3.8 Ga) source is also indicated by previously published Pb-isotope datasets for the Mushandike stromatolites. This is entirely compatible with the occurrence of 3.7-3.8 Ga zircons in quartzites and metapelites from comparably old greenstone belts within less than 150 km of the studied locality. Comparison of the Pb-isotope ratios of the Mushandike stromatolites with 2.7 and 2.6 Ga old stromatolites from the neighbouring, Belingwe Greenstone Belt demonstrates differences in initial isotope composition that relate to the extent of exchange with the open ocean. The development of numerous basins on old continental crust, with water masses variably restricted from the open ocean. suggests a lack of strong vertical topography on this late Archaean craton. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chaotically structured diamictite from the inner ring syncline surrounding the central uplift of the Woodleigh impact structure contains shocked metamorphic and impact melt-rock fragments, largely derived from Ordovician and Devonian target sandstones. Coarse illite fractions (< 2 mu m) from the sandstones containing no K-feldspar yield K-Ar ages of around 400 Ma, whereas the K-Ar ages of authigenic clays of > 0.2 mu m fractions from the diamictite without smectite and K-feldspar cluster around 360 Ma, consistent with Rb-Sr data. Crystallisation of newly formed illite in the impact melt rock clasts and recrystallisation of earlier formed illite in the sandstone clasts preserved in the diamictite, are attributed to impact-induced hydrothermal processes in the Late Devonian. The illitic clays from the diamictite and from the sandstones have very similar trace element compositions, with significantly enriched incompatible lithophile elements, which increase in concentrations correlatively with those of the compatible ferromagnesian elements. The unusual trace element associations in the clays may be due to the involvement of hot gravity-driven basinal fluids that interacted with rocks of the Precambrian craton to the east of the study area, or with such material transported and reworked in the studied sedimentary succession.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tephra fallout layers and volcaniclastic deposits, derived from volcanic sources around and on the Papuan Peninsula, form a substantial part of the Woodlark Basin marine sedimentary succession. Sampling by the Ocean Drilling Program Leg 180 in the western Woodlark Basin provides the opportunity to document the distribution of the volcanically-derived components as well as to evaluate their chronology, chemistry, and isotope compositions in order to gain information on the volcanic sources and original magmatic systems. Glass shards selected from 57 volcanogenic layers within the sampled Pliocene-Pleistocene sedimentary sequence show predominantly rhyolitic compositions, with subordinate basaltic andesites, basaltic trachy-andesites, andesites, trachy-andesites, dacites, and phonolites. It was possible to correlate only a few of the volcanogenic layers between sites using geochemical and age information apparently because of the formation of strongly compartmentalised sedimentary realms on this actively rifting margin. In many cases it was possible to correlate Leg 180 volcanic components with their eruption source areas based on chemical and isotope compositions. Likely sources for a considerable number of the volcanogenic deposits are Moresby and Dawson Strait volcanoes (D'Entrecasteaux Islands region) for high-K calc-alkaline glasses. The Dawson Strait volcanoes appear to represent the source for five peralkaline tephra layers. One basaltic andesitic volcaniclastic layer shows affinities to basaltic andesites from the Woodlark spreading tip and Cheshire Seamount. For other layers, a clear identification of the sources proved impossible, although their isotope and chemical signatures suggest similarities to south-west Pacific subduction volcanism, e.g. New Britain and Tonga- Kermadec island arcs. Volcanic islands in the Trobriand Arc (for example, Woodlark Island Amphlett Islands and/or Egum Atoll) are probable sources for several volcaniclastic layers with ages between 1.5 to 3 Ma. The Lusancay Islands can be excluded as a source for the volcanogenic layers found during Leg 180. Generally, the volcanogenic layers indicate much calc-alkaline rhyolitic volcanism in eastern Papua since 3.8 Ma. Starting at 135 ka, however, peralkaline tephra layers appear. This geochemical change in source characteristics might reflect the onset of a change in geotectonic regime, from crustal subduction to spreading, affecting the D'Entrecasteaux Islands region. Initial 143Nd/144Nd ratios as low as 0.5121 and 0.5127 for two of the tephra layers are interpreted as indicating that D'Entrecasteaux Islands volcanism younger than 2.9 Ma occasionally interacted with the Late Archean basement, possibly reflecting the mobilisation of the deep continental crust during active rift propagation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.